Coboundary expanders

We describe a higher-dimensional generalization of edge expansion for graphs which applies to arbitrary cell complexes. This generalization relies on a type of co-isoperimetric inequality. We utilize these inequalities to analyze the topological and geometric behavior of some families of random simplicial complexes.

[1]  Alexander Lubotzky,et al.  Explicit constructions of Ramanujan complexes of type , 2005, Eur. J. Comb..

[2]  N. Wallach,et al.  Homological connectivity of random k-dimensional complexes , 2009 .

[3]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[4]  N. Wormald,et al.  Models of the , 2010 .

[5]  Michael Krivelevich,et al.  The isoperimetric constant of the random graph process , 2008, Random Struct. Algorithms.

[6]  Paul Erdös,et al.  On random graphs, I , 1959 .

[7]  J. Dodziuk Difference equations, isoperimetric inequality and transience of certain random walks , 1984 .

[8]  Devdatt P. Dubhashi,et al.  Concentration of Measure for the Analysis of Randomized Algorithms: Contents , 2009 .

[9]  János Pach,et al.  Overlap properties of geometric expanders , 2011, SODA '11.

[10]  D. Kozlov The threshold function for vanishing of the top homology group of random $d$-complexes , 2009, 0904.1652.

[11]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[12]  Wen-Ching Winnie Li Ramanujan hypergraphs , 2004 .

[13]  M. Pinsker,et al.  On the complexity of a concentrator , 1973 .

[14]  Uli Wagner,et al.  Minors in random and expanding hypergraphs , 2011, SoCG '11.

[15]  I. James,et al.  Singularities * , 2008 .

[16]  A. Lubotzky,et al.  Ramanujan graphs , 2017, Comb..

[17]  Alexander Lubotzky,et al.  Ramanujan complexes of typeÃd , 2005 .

[18]  Matthew Kahle,et al.  The fundamental group of random 2-complexes , 2007, 0711.2704.

[19]  Nathan Linial,et al.  Homological Connectivity Of Random 2-Complexes , 2006, Comb..