Comparison between laser terahertz emission microscope and conventional methods for analysis of polycrystalline silicon solar cell

A laser terahertz emission microscope (LTEM) can be used for noncontact inspection to detect the waveforms of photoinduced terahertz emissions from material devices. In this study, we experimentally compared the performance of LTEM with conventional analysis methods, e.g., electroluminescence (EL), photoluminescence (PL), and laser beam induced current (LBIC), as an inspection method for solar cells. The results showed that LTEM was more sensitive to the characteristics of the depletion layer of the polycrystalline solar cell compared with EL, PL, and LBIC and that it could be used as a complementary tool to the conventional analysis methods for a solar cell.

[1]  Antonio Luque,et al.  Handbook of Photovoltaic Science and Engineering: Luque/Handbook of Photovoltaic Science and Engineering , 2010 .

[2]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[3]  A. Ogura,et al.  Analysis of Intra-Grain Defects in Multicrystalline Silicon Wafers by Photoluminescence Mapping and Spectroscopy , 2006 .

[4]  D. Mittleman,et al.  T-ray imaging , 1996 .

[5]  Hayato Kondo,et al.  Analytic findings in the electroluminescence characterization of crystalline silicon solar cells , 2007 .

[6]  Masatsugu Yamashita,et al.  Backside observation of large-scale integrated circuits with multilayered interconnections using laser terahertz emission microscope , 2009 .

[7]  Hironaru Murakami,et al.  Imaging of a Polycrystalline Silicon Solar Cell Using a Laser Terahertz Emission Microscope , 2012 .

[8]  B. Moralejo,et al.  LBIC and Reflectance Mapping of Multicrystalline Si Solar Cells , 2010 .

[9]  Q. Shen,et al.  Ultrafast carrier dynamics in PbS quantum dots , 2012 .

[10]  W. Warta,et al.  Solar cell efficiency tables (version 36) , 2010 .

[11]  Otwin Breitenstein,et al.  Material-induced shunts in multicrystalline silicon solar cells , 2007 .

[12]  Ultra high-speed characterization of multicrystalline Si wafers by photoluminescence imaging with HF immersion , 2008 .

[13]  K. Nakajima,et al.  High-speed growth of Si single bulk crystals by expanding low-temperature region in Si melt using noncontact crucible method , 2014 .

[14]  M. Tonouchi,et al.  Transmission-Type Laser THz Emission Microscope Using a Solid Immersion Lens , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  Martin Kasemann,et al.  Spatially resolved determination of the dark saturation current of silicon solar cells from electroluminescence images , 2009 .

[16]  Wilhelm Warta,et al.  Diffusion lengths of silicon solar cells from luminescence images , 2007 .

[17]  M. Schubert,et al.  Photoluminescence imaging of silicon wafers , 2006 .

[18]  R. Margolis,et al.  A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs , 2013 .

[19]  Hironaru Murakami,et al.  Scanning laser THz imaging system , 2014 .

[20]  Xicheng Zhang,et al.  Materials for terahertz science and technology , 2002, Nature materials.

[21]  Hironaru Murakami,et al.  Laser terahertz emission microscopy studies of a polysilicon solar cell under the illumination of continuous laser light , 2013 .

[22]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[23]  T. Fuyuki,et al.  Effect of hydrogen plasma treatment on grain boundaries in polycrystalline silicon solar cell evaluated by laser-beam-induced current , 2007 .