Fullerenes for rechargeable battery applications: Recent developments and future perspectives

[1]  Xing Lu,et al.  Isolation and crystallographic characterization of Lu2C2@C2 (2n = 88–92): Internal cluster stretching upon outer cage expansion , 2020 .

[2]  Xing Lu,et al.  Fullerene micro/nanostructures: controlled synthesis and energy applications , 2020 .

[3]  F. Duffner,et al.  Battery cost modeling: A review and directions for future research , 2020 .

[4]  Nageh K. Allam,et al.  Fullerene C76 as a novel electrocatalyst for VO2+/VO2+ and chlorine evolution inhibitor in all-vanadium redox flow batteries. , 2020, Chemical communications.

[5]  C. Sloby,et al.  Discovering the fullerenes , 1997 .

[6]  Liquan Chen,et al.  Insights into Lithium and Sodium Storage in Porous Carbon. , 2020, Nano letters.

[7]  Jiaqi Huang,et al.  Toward Critical Electrode/Electrolyte Interfaces in Rechargeable Batteries , 2020, Advanced Functional Materials.

[8]  Jaephil Cho,et al.  An Antiaging Electrolyte Additive for High‐Energy‐Density Lithium‐Ion Batteries , 2020, Advanced Energy Materials.

[9]  Lifang Jiao,et al.  Polyanion-type cathode materials for sodium-ion batteries. , 2020, Chemical Society reviews.

[10]  L. Echegoyen,et al.  Crystallographic and spectroscopic characterization of a mixed actinide-lanthanide carbide cluster stabilized inside an Ih(7)-C80 fullerene cage. , 2020, Chemical communications.

[11]  K. C. Wasalathilake,et al.  Recent advances in graphene based materials as anode materials in sodium-ion batteries , 2020, Journal of Energy Chemistry.

[12]  Xing Lu,et al.  Low-temperature solution-combustion-processed Zn-Doped Nb2O5 as an electron transport layer for efficient and stable perovskite solar cells , 2020 .

[13]  Hsing-lin Wang,et al.  C60(OH)12 and its Nanocomposite for High-Performance Lithium Storage. , 2020, ACS nano.

[14]  Yong-Jin Kim,et al.  Electret formation in transition metal oxides by electrochemical amorphization , 2020, NPG Asia Materials.

[15]  Guangmin Zhou,et al.  Air‐Stable and Dendrite‐Free Lithium Metal Anodes Enabled by a Hybrid Interphase of C60 and Mg , 2019, Advanced Energy Materials.

[16]  Jinliang Ma,et al.  Palladium-Catalyzed Three-Component Tandem Coupling-Carboannulation Reaction Leading to Polysubstituted [60]Fullerene-Fused Cyclopentanes. , 2019, Organic letters.

[17]  Xing Lu,et al.  Regioselective Synthesis, Crystallographic Characterization and Electrochemical Properties of Pyrazole- and Pyrrole-ring Fused Derivatives of Y2@C3v(8)-C82. , 2019, Chemistry.

[18]  Xing Lu,et al.  Preferential formation of mono-metallofullerenes governed by the encapsulation energy of the metal elements: A case study on Eu@C2n (2n = 74-84) revealing a general rule. , 2019, Angewandte Chemie.

[19]  Jing Lu,et al.  Nitrofullerene, a C60-based Bifunctional Additive with Smoothing and Protecting Effects for Stable Lithium Metal Anode. , 2019, Nano letters.

[20]  Wei Zhang,et al.  Carbon fragments as highly active metal-free catalysts for the oxygen reduction reaction: a mechanistic study. , 2019, Nanoscale.

[21]  Jiaqi Huang,et al.  Perspective on the critical role of interface for advanced batteries , 2019, Journal of Energy Chemistry.

[22]  Yulong Sun,et al.  Facile Generation of Polymer-Alloy Hybrid Layer towards Dendrite-free Lithium Metal Anode with Improved Moisture Stability. , 2019, Angewandte Chemie.

[23]  Chen‐Zi Zhao,et al.  Artificial Interphases for Highly Stable Lithium Metal Anode , 2019, Matter.

[24]  Zhe Li,et al.  A review on the key issues of the lithium ion battery degradation among the whole life cycle , 2019, eTransportation.

[25]  C. Milanese,et al.  Fullerene mixtures as negative electrodes in innovative Na-ion batteries , 2019, Chemical Physics Letters.

[26]  T. Nakanishi,et al.  Self-Assembled and Nonassembled Alkylated-Fullerene Materials. , 2019, Accounts of chemical research.

[27]  M. R. Palacín,et al.  Multivalent rechargeable batteries , 2019, Energy Storage Materials.

[28]  Yiwang Chen,et al.  Amphiphilic Fullerenes Employed to Improve the Quality of Perovskite Films and the Stability of Perovskite Solar Cells. , 2019, ACS applied materials & interfaces.

[29]  A. Belghachi,et al.  Monte Carlo simulation of electric conductivity for pure and doping fullerene (C60) , 2019, Physics Letters A.

[30]  S. Joo,et al.  Organic Semiconductor Cocrystal for Highly Conductive Lithium Host Electrode , 2019, Advanced Functional Materials.

[31]  Shangfeng Yang,et al.  Chlorination-Promoted Skeletal Transformations of Fullerenes. , 2019, Accounts of chemical research.

[32]  Jun Lu,et al.  Commercialization of Lithium Battery Technologies for Electric Vehicles , 2019, Advanced Energy Materials.

[33]  W. Ni,et al.  Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS2 , 2019, Journal of Energy Chemistry.

[34]  Jiaqi Huang,et al.  3D Hierarchical Porous Graphene-Based Energy Materials: Synthesis, Functionalization, and Application in Energy Storage and Conversion , 2019, Electrochemical Energy Reviews.

[35]  Xiao‐Qing Yang,et al.  Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research , 2019, Advanced materials.

[36]  F. So,et al.  Defect Passivation by Fullerene Derivative in Perovskite Solar Cells with Aluminum-Doped Zinc Oxide as Electron Transporting Layer , 2019, Chemistry of Materials.

[37]  Xing Lu,et al.  Crystallographic characterization of Y2C2n (2n = 82, 88–94): direct Y–Y bonding and cage-dependent cluster evolution , 2019, Chemical Science.

[38]  M. Cellura,et al.  Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles , 2019, Journal of cleaner production.

[39]  Xifei Li,et al.  Unique Double-Interstitialcy Mechanism and Interfacial Storage Mechanism in the Graphene/Metal Oxide as the Anode for Sodium-Ion Batteries. , 2019, Nano letters.

[40]  D. Brandell,et al.  Boosting Rechargeable Batteries R&D by Multiscale Modeling: Myth or Reality? , 2019, Chemical reviews.

[41]  S. Ahmadi,et al.  A DFT study on nanocones, nanotubes (4,0), nanosheets and fullerene C60 as anodes in Mg-ion batteries , 2019, RSC advances.

[42]  Xing Lu,et al.  C60-Decorated nickel-cobalt phosphide as an efficient and robust electrocatalyst for hydrogen evolution reaction. , 2018, Nanoscale.

[43]  L. Ci,et al.  Facile preparation of fullerene nanorods for high-performance lithium-sulfur batteries , 2018, Materials Letters.

[44]  Shangfeng Yang,et al.  Hybrids of Fullerenes and 2D Nanomaterials , 2018, Advanced science.

[45]  R. Kizek,et al.  Fullerene as a doxorubicin nanotransporter for targeted breast cancer therapy: Capillary electrophoresis analysis , 2018, Electrophoresis.

[46]  Minh Xuan Tran,et al.  Self-Relaxant Superelastic Matrix Derived from C60 Incorporated Sn Nanoparticles for Ultra-High-Performance Li-Ion Batteries. , 2018, ACS nano.

[47]  Bin Liu,et al.  Advancing Lithium Metal Batteries , 2018 .

[48]  Hui Xu,et al.  Developing High‐Performance Lithium Metal Anode in Liquid Electrolytes: Challenges and Progress , 2018, Advanced materials.

[49]  D. Pontiroli,et al.  Electrochemical intercalation of fullerene and hydrofullerene with sodium , 2018 .

[50]  U. Stimming,et al.  All-Fullerene-Based Cells for Nonaqueous Redox Flow Batteries. , 2018, Journal of the American Chemical Society.

[51]  Wen He,et al.  Na‐Doped C70 Fullerene/N‐Doped Graphene/Fe‐Based Quantum Dot Nanocomposites for Sodium‐Ion Batteries with Ultrahigh Coulombic Efficiency , 2018 .

[52]  Yan Yu,et al.  Expanding pore sizes of ZIF-8-derived nitrogen-doped microporous carbon via C60 embedding: toward improved anode performance for the lithium-ion battery. , 2017, Nanoscale.

[53]  Hsing-lin Wang,et al.  Functionalized fullerenes for highly efficient lithium ion storage: Structure-property-performance correlation with energy implications , 2017 .

[54]  Tianyou Zhai,et al.  Reviving Lithium‐Metal Anodes for Next‐Generation High‐Energy Batteries , 2017, Advanced materials.

[55]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[56]  Jang‐Yeon Hwang,et al.  Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.

[57]  J. Conde,et al.  Fullerene: biomedical engineers get to revisit an old friend , 2017 .

[58]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[59]  H. Dorn,et al.  Biomedical Applications of Metal-Encapsulated Fullerene Nanoparticles. , 2017, Small.

[60]  R. Ruoff,et al.  Incorporating Pyrrolic and Pyridinic Nitrogen into a Porous Carbon made from C60 Molecules to Obtain Superior Energy Storage , 2017, Advanced materials.

[61]  K. Eguiluz,et al.  Fullerene applications in fuel cells: A review , 2016 .

[62]  Lynden A. Archer,et al.  Design principles for electrolytes and interfaces for stable lithium-metal batteries , 2016, Nature Energy.

[63]  Nan Zhang,et al.  Structural diversity of graphene materials and their multifarious roles in heterogeneous photocatalysis , 2016 .

[64]  C. Milanese,et al.  Tailoring ionic-electronic transport in PEO-Li4C60: Towards a new class of all solid-state mixed conductors , 2016 .

[65]  Shangfeng Yang,et al.  New Isolated-Pentagon-Rule and Skeletally Transformed Isomers of C100 Fullerene Identified by Structure Elucidation of their Chloro Derivatives. , 2016, Angewandte Chemie.

[66]  D. Pontiroli,et al.  Probing the thermal stability and the decomposition mechanism of a magnesium-fullerene polymer via X-ray Raman spectroscopy, X-ray diffraction and molecular dynamics simulations. , 2016, Physical chemistry chemical physics : PCCP.

[67]  H. Seifert,et al.  A polymerized C60 coating enhancing interfacial stability at three-dimensional LiCoO2 in high-potential regime , 2015 .

[68]  R. Peng,et al.  DMSO: An Efficient Catalyst for the Cyclopropanation of C60, C70, SWNTs, and Graphene through the Bingel Reaction , 2015 .

[69]  C. Ling,et al.  Fullerenes: non-transition metal clusters as rechargeable magnesium battery cathodes. , 2015, Chemical communications.

[70]  O. Ivankov,et al.  On the origin of C₆₀ fullerene solubility in aqueous solution. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[71]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[72]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[73]  Joong-Kee Lee,et al.  Estimation of Li-Ion Diffusion Coefficients in C60 Coated Si Thin Film Anodes Using Electrochemical Techniques , 2012 .

[74]  Joong-Kee Lee,et al.  Nano-carbon coating layer prepared by the thermal evaporation of fullerene C60 for lithium metal anodes in rechargeable lithium batteries. , 2011, Journal of nanoscience and nanotechnology.

[75]  Arenst Andreas Arie,et al.  Surface-Coated Silicon Anodes with Amorphous Carbon Film Prepared by Fullerene C60 Sputtering , 2010 .

[76]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[77]  B. Cho,et al.  Carbon film covering originated from fullerene C60 on the surface of lithium metal anode for lithium secondary batteries , 2009 .

[78]  M. Armand,et al.  Building better batteries , 2008, Nature.

[79]  J. West,et al.  The Differential Cytotoxicity of Water-Soluble Fullerenes , 2004 .

[80]  L. Forró,et al.  Electronic properties of doped fullerenes , 2001 .

[81]  L. Echegoyen,et al.  Electrochemistry of Fullerenes and Their Derivatives , 1998 .

[82]  L. Echegoyen,et al.  Reversible Fullerene Electrochemistry: Correlation with the HOMO-LUMO Energy Difference for C60, C70, C76, C78, and C84 , 1995 .

[83]  A. Bard,et al.  Electrochemistry of fullerene films , 1995 .

[84]  S. Lemont,et al.  Electrochemical Reduction of Graphite and Fullerenes from Solid Lithium Salt/Polymer Electrolytes , 1994 .

[85]  R. Yazami,et al.  The Electrochemical Behaviour of Fullerenes in Liquid Electrolyte , 1994 .

[86]  Rodney S. Ruoff,et al.  Solubility of fullerene (C60) in a variety of solvents , 1993 .

[87]  S. Behal,et al.  Characterization of C60 and C70 Clusters , 1991 .

[88]  R. F. Curl,et al.  Probing C60 , 1988, Science.

[89]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[90]  Jun Mei,et al.  Two-dimensional metal oxide nanosheets for rechargeable batteries , 2018 .

[91]  Hun‐Gi Jung,et al.  Plasma-polymerized C60 as a functionalized coating layer on fluorine-doped tin oxides for anode materials of lithium-ion batteries , 2015 .

[92]  S. Jang,et al.  First-principles study of Li adsorption in a carbon nanotube-fullerene hybrid system , 2011 .

[93]  Arenst Andreas Arie,et al.  Effect of fullerene coating on silicon thin film anodes for lithium rechargeable batteries , 2009 .

[94]  G. Stucky,et al.  Ionic Conductivity of C60-Based Solid Electrolyte , 1998 .

[95]  M. Armand,et al.  Electrochemical intercalation of lithium into solid fullerene C60 , 1992 .