Atmospheric-pressure particle mass spectrometer for investigating particle growth in spray flames

[1]  I. Wlokas,et al.  Insights into the Mechanism of Combustion Synthesis of Iron Oxide Nanoparticles Gained by Laser Diagnostics, Mass Spectrometry, and Numerical Simulations: A Mini-Review , 2020, Energy & Fuels.

[2]  H. Nirschl,et al.  Examination of the evolution of iron oxide nanoparticles in flame spray pyrolysis by tailored in situ particle sampling techniques , 2020 .

[3]  L. Mädler,et al.  Phase-selective laser–induced breakdown spectroscopy in flame spray pyrolysis for iron oxide nanoparticle synthesis , 2020 .

[4]  Fabio J. W. A. Martins,et al.  Experimental investigation of axisymmetric, turbulent, annular jets discharged through the nozzle of the SPP1980 SpraySyn burner under isothermal and reacting conditions , 2020, Experimental Thermal and Fluid Science.

[5]  S. Will,et al.  Droplet sizing in spray flame synthesis using wide-angle light scattering (WALS) , 2020, Applied Physics B.

[6]  S. Pokhrel,et al.  The gas-phase formation of tin dioxide nanoparticles in single droplet combustion and flame spray pyrolysis , 2020, Combustion and flame.

[7]  U. Fritsching,et al.  DROP DYNAMICS IN HETEROGENEOUS SPRAY FLAMES FOR NANOPARTICLE SYNTHESIS , 2020 .

[8]  A. Kempf,et al.  SpraySyn-A standardized burner configuration for nanoparticle synthesis in spray flames. , 2019, The Review of scientific instruments.

[9]  C. Schulz,et al.  Synthesis of silicon nanoparticles in a pilot-plant-scale microwave plasma reactor: Impact of flow rates and precursor concentration on the nanoparticle size and aggregation , 2019, Powder Technology.

[10]  C. Schulz,et al.  Spray‐flame synthesis of La(Fe, Co)O 3 nano‐perovskites from metal nitrates , 2019, AIChE Journal.

[11]  C. Schulz,et al.  Gas-phase synthesis of functional nanomaterials: Challenges to kinetics, diagnostics, and process development , 2019 .

[12]  F. Kruis,et al.  Ejector-based sampling from low-pressure aerosol reactors , 2018, Journal of Aerosol Science.

[13]  G. Settles,et al.  A review of recent developments in schlieren and shadowgraph techniques , 2017 .

[14]  Lei Deng,et al.  Large eddy simulations of nanoparticle synthesis from flame spray pyrolysis , 2017 .

[15]  C. Schulz,et al.  Mass spectrometric analysis of clusters and nanoparticles during the gas-phase synthesis of tungsten oxide , 2017 .

[16]  P. Biswas,et al.  Flame aerosol synthesis of nanostructured materials and functional devices: Processing, modeling, and diagnostics , 2016 .

[17]  S. Pratsinis,et al.  Sampling and dilution of nanoparticles at high temperature , 2016 .

[18]  L. Mädler,et al.  The Role of Microexplosions in Flame Spray Synthesis for Homogeneous Nanopowders from Low-cost Metal Precursors , 2016 .

[19]  C. Schulz,et al.  Laser-based diagnostics in the gas-phase synthesis of inorganic nanoparticles , 2016 .

[20]  C. Schulz,et al.  Impact of Ambient Pressure on Titania Nanoparticle Formation During Spray-Flame Synthesis. , 2015, Journal of nanoscience and nanotechnology.

[21]  A. Kempf,et al.  Investigation of the sampling nozzle effect on laminar flat flames , 2015 .

[22]  A. Kempf,et al.  Numerical investigation of the process steps in a spray flame reactor for nanoparticle synthesis , 2015 .

[23]  S. Pratsinis,et al.  On-line monitoring of primary and agglomerate particle dynamics , 2014 .

[24]  H. Wiggers,et al.  Direct gas-phase synthesis of single-phase β-FeSi2 nanoparticles , 2013, Journal of Nanoparticle Research.

[25]  Antonio Tricoli,et al.  Flame spray pyrolysis synthesis and aerosol deposition of nanoparticle films , 2012 .

[26]  H. Nirschl,et al.  Experimental study of gas-dynamically induced nanoparticle synthesis by use of adapted sampling probes , 2011 .

[27]  L. Mädler,et al.  Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication. , 2010, Nanoscale.

[28]  L. M. Weinstein,et al.  Review and update of lens and grid schlieren and motion camera schlieren , 2010 .

[29]  D. Kil,et al.  Mechanisms of the Formation of Silica Particles from Precursors with Different Volatilities by Flame Spray Pyrolysis , 2009 .

[30]  Stefan Will,et al.  Laser-induced incandescence: recent trends and current questions , 2006 .

[31]  P. R. Westmoreland,et al.  Enols Are Common Intermediates in Hydrocarbon Oxidation , 2005, Science.

[32]  Lutz Mädler,et al.  Controlled synthesis of nanostructured particles by flame spray pyrolysis , 2002 .

[33]  L. Mädler,et al.  Flame Synthesis of Nanoparticles , 2001 .

[34]  Jayanta Panda,et al.  Measurement of shock structure and shock–vortex interaction in underexpanded jets using Rayleigh scattering , 1999 .

[35]  D. E. Rosner,et al.  Simultaneous measurements of soot volume fraction and particle size/ Microstructure in flames using a thermophoretic sampling technique , 1997 .

[36]  K. W. Lee,et al.  Deposition of particles in turbulent pipe flows , 1994 .

[37]  P. Roth Design and test of a particle mass spectrometer (PMS) , 1994 .

[38]  P. Roth In-situ mass growth measurements of charged soot particles from low pressure flames , 1991 .

[39]  Peng-yuan Yang,et al.  Fundamental studies of the sampling process in an inductively coupled plasma mass spectrometer-I: Langmuir probe measurements , 1991 .

[40]  A C Wells,et al.  TRANSPORT OF SMALL PARTICLES TO VERTICAL SURFACES. , 1967 .

[41]  F. S. Sherman,et al.  The Structure and Utilization of Supersonic Free Jets in Low Density Wind Tunnels , 1965 .

[42]  B. Schmidt,et al.  Zur Form der Verdichtungsstoesse in frei expandierenden Gasstrahlen , 1961 .