Preface to Girard's Festschrift

This text is both meant as a preface to a volume of Theoretical Computer Science dedicated to Jean-Yves Girard, and as a short essay in French (with an English summary) on the relation between proof theory and programming languages -- a coming together in which Jean-Yves' works play a prominent role.

[1]  J. Y. Girard,et al.  Interpretation fonctionelle et elimination des coupures dans l'aritmetique d'ordre superieur , 1972 .

[2]  Bengt Nordström,et al.  Programming in Martin-Löf's Type Theory , 1990 .

[3]  Jean-Yves Girard Locus Solum: From the Rules of Logic to the Logic of Rules , 2001, CSL.

[4]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[5]  Yves Lafont,et al.  The Linear Abstract Machine , 1988, Theor. Comput. Sci..

[6]  Thierry Coquand,et al.  The Calculus of Constructions , 1988, Inf. Comput..

[7]  Andrzej Filinski Linear continuations , 1992, POPL '92.

[8]  Jean-Yves Girard,et al.  Geometry of Interaction 1: Interpretation of System F , 1989 .

[9]  Michele Pagani,et al.  Strong normalization property for second order linear logic , 2010, Theor. Comput. Sci..

[10]  Pierre-Louis Curien,et al.  Sequential Algorithms on Concrete Data Structures , 1982, Theor. Comput. Sci..

[11]  Glynn Winskel,et al.  Petri Nets as Models of Linear Logic , 1990, CAAP.

[12]  Francisco Alberti Type-based static analysis of structural properties in programming languages. (Analyse statique typée des propriétés structurelles des programmes) , 2005 .

[13]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[14]  Michel Parigot,et al.  Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.

[15]  Thomas Ehrhard Hypercoherences: A Strongly Stable Model of Linear Logic , 1993, Math. Struct. Comput. Sci..

[16]  J. Roger Hindley,et al.  To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .

[17]  Jean-Yves Girard,et al.  A new constructive logic: classic logic , 1991, Mathematical Structures in Computer Science.

[18]  Olivier Laurent,et al.  About translations of classical logic into polarized linear logic , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[19]  David J. Pym,et al.  The semantics and proof theory of the logic of bunched implications , 2002, Applied logic series.

[20]  John C. Reynolds,et al.  Towards a theory of type structure , 1974, Symposium on Programming.

[21]  Olivier Laurent Syntax vs. semantics: A polarized approach , 2005, Theor. Comput. Sci..

[22]  Nobuko Yoshida,et al.  Sequentiality and the pi-Calculus , 2001, TLCA.

[23]  Philip Wadler,et al.  Linear Types can Change the World! , 1990, Programming Concepts and Methods.

[24]  James Harland,et al.  A Uniform Proof-Theoretic Investigation of Linear Logic Programming , 1994, J. Log. Comput..

[25]  Mariangiola Dezani-Ciancaglini,et al.  A filter lambda model and the completeness of type assignment , 1983, Journal of Symbolic Logic.

[26]  Hugo Herbelin,et al.  The duality of computation , 2000, ICFP '00.

[27]  Corrado Böhm,et al.  Automatic Synthesis of Typed Lambda-Programs on Term Algebras , 1985, Theor. Comput. Sci..

[28]  Pierre-Louis Curien Abstract Böhm trees , 1998, Math. Struct. Comput. Sci..

[29]  Pierre-Louis Curien On the Symmetry of Sequentiality , 1993, MFPS.

[30]  Andrea Asperti,et al.  The optimal implementation of functional programming languages , 1998, Cambridge tracts in theoretical computer science.

[31]  Gérard Berry,et al.  Stable Models of Typed lambda-Calculi , 1978, ICALP.

[32]  Narciso Martí-Oliet,et al.  From Petri nets to linear logic , 1989, Mathematical Structures in Computer Science.

[33]  Guy McCusker Games and Full Abstraction for FPC , 2000, Inf. Comput..

[34]  Vincent Danos La Logique Linéaire appliquée à l'étude de divers processus de normalisation (principalement du Lambda-calcul) , 1990 .

[35]  Ian Mackie,et al.  Lilac: a functional programming language based on linear logic , 1994, Journal of Functional Programming.

[36]  de Ng Dick Bruijn,et al.  The mathematical language AUTOMATH, its usage, and some of its extensions , 1970 .

[37]  Roberto M. Amadio,et al.  Domains and lambda-calculi , 1998, Cambridge tracts in theoretical computer science.

[38]  Jean-Yves Girard,et al.  Light Linear Logic , 1998, Inf. Comput..

[39]  J. Girard,et al.  Proofs and types , 1989 .

[40]  Tristan Crolard,et al.  Deriving a Hoare-Floyd logic for non-local jumps from a formulae-as-types notion of control , 2011, ArXiv.

[41]  Glynn Winskel,et al.  Linearity in process languages , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[42]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[43]  Paul Hudak,et al.  Single-threaded polymorphic lambda calculus , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[44]  Guillaume Munch-Maccagnoni Focalisation and Classical Realisability , 2009, CSL.

[45]  JEAN-MARC ANDREOLI,et al.  Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..

[46]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[47]  Martín Abadi,et al.  The geometry of optimal lambda reduction , 1992, POPL '92.

[48]  Radha Jagadeesan,et al.  Games and Full Completeness for Multiplicative Linear Logic , 1994, J. Symb. Log..

[49]  John Lamping An algorithm for optimal lambda calculus reduction , 1989, POPL '90.

[50]  J. Girard Proof Theory and Logical Complexity , 1989 .

[51]  Benjamin C. Pierce,et al.  Linearity and the pi-calculus , 1999, TOPL.

[52]  Per Martin-Löf,et al.  Intuitionistic type theory , 1984, Studies in proof theory.

[53]  Vincent Danos,et al.  A new deconstructive logic: linear logic , 1997, Journal of Symbolic Logic.

[54]  Dale Miller,et al.  An Overview of Linear Logic Programming , 2003 .

[55]  Pierre-Louis Curien,et al.  Notes on game semantics , 2006 .

[56]  S. Abramsky Game Semantics , 1999 .

[57]  Masahito Hasegawa Linearly Used Effects: Monadic and CPS Transformations into the Linear Lambda Calculus , 2001, APLAS.

[58]  Thomas Ehrhard,et al.  Interpreting a finitary pi-calculus in differential interaction nets , 2007, Inf. Comput..

[59]  Radha Jagadeesan,et al.  Full Abstraction for PCF , 1994, Inf. Comput..

[60]  Paul-André Melliès Asynchronous games 4: a fully complete model of propositional linear logic , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[61]  G. Longo,et al.  Lambda-Calculus Models and Extensionality , 1980, Math. Log. Q..