Preface to Girard's Festschrift
暂无分享,去创建一个
[1] J. Y. Girard,et al. Interpretation fonctionelle et elimination des coupures dans l'aritmetique d'ordre superieur , 1972 .
[2] Bengt Nordström,et al. Programming in Martin-Löf's Type Theory , 1990 .
[3] Jean-Yves Girard. Locus Solum: From the Rules of Logic to the Logic of Rules , 2001, CSL.
[4] Robin Milner,et al. A Calculus of Mobile Processes, II , 1992, Inf. Comput..
[5] Yves Lafont,et al. The Linear Abstract Machine , 1988, Theor. Comput. Sci..
[6] Thierry Coquand,et al. The Calculus of Constructions , 1988, Inf. Comput..
[7] Andrzej Filinski. Linear continuations , 1992, POPL '92.
[8] Jean-Yves Girard,et al. Geometry of Interaction 1: Interpretation of System F , 1989 .
[9] Michele Pagani,et al. Strong normalization property for second order linear logic , 2010, Theor. Comput. Sci..
[10] Pierre-Louis Curien,et al. Sequential Algorithms on Concrete Data Structures , 1982, Theor. Comput. Sci..
[11] Glynn Winskel,et al. Petri Nets as Models of Linear Logic , 1990, CAAP.
[12] Francisco Alberti. Type-based static analysis of structural properties in programming languages. (Analyse statique typée des propriétés structurelles des programmes) , 2005 .
[13] Patrick Lincoln,et al. Linear logic , 1992, SIGA.
[14] Michel Parigot,et al. Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.
[15] Thomas Ehrhard. Hypercoherences: A Strongly Stable Model of Linear Logic , 1993, Math. Struct. Comput. Sci..
[16] J. Roger Hindley,et al. To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .
[17] Jean-Yves Girard,et al. A new constructive logic: classic logic , 1991, Mathematical Structures in Computer Science.
[18] Olivier Laurent,et al. About translations of classical logic into polarized linear logic , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..
[19] David J. Pym,et al. The semantics and proof theory of the logic of bunched implications , 2002, Applied logic series.
[20] John C. Reynolds,et al. Towards a theory of type structure , 1974, Symposium on Programming.
[21] Olivier Laurent. Syntax vs. semantics: A polarized approach , 2005, Theor. Comput. Sci..
[22] Nobuko Yoshida,et al. Sequentiality and the pi-Calculus , 2001, TLCA.
[23] Philip Wadler,et al. Linear Types can Change the World! , 1990, Programming Concepts and Methods.
[24] James Harland,et al. A Uniform Proof-Theoretic Investigation of Linear Logic Programming , 1994, J. Log. Comput..
[25] Mariangiola Dezani-Ciancaglini,et al. A filter lambda model and the completeness of type assignment , 1983, Journal of Symbolic Logic.
[26] Hugo Herbelin,et al. The duality of computation , 2000, ICFP '00.
[27] Corrado Böhm,et al. Automatic Synthesis of Typed Lambda-Programs on Term Algebras , 1985, Theor. Comput. Sci..
[28] Pierre-Louis Curien. Abstract Böhm trees , 1998, Math. Struct. Comput. Sci..
[29] Pierre-Louis Curien. On the Symmetry of Sequentiality , 1993, MFPS.
[30] Andrea Asperti,et al. The optimal implementation of functional programming languages , 1998, Cambridge tracts in theoretical computer science.
[31] Gérard Berry,et al. Stable Models of Typed lambda-Calculi , 1978, ICALP.
[32] Narciso Martí-Oliet,et al. From Petri nets to linear logic , 1989, Mathematical Structures in Computer Science.
[33] Guy McCusker. Games and Full Abstraction for FPC , 2000, Inf. Comput..
[34] Vincent Danos. La Logique Linéaire appliquée à l'étude de divers processus de normalisation (principalement du Lambda-calcul) , 1990 .
[35] Ian Mackie,et al. Lilac: a functional programming language based on linear logic , 1994, Journal of Functional Programming.
[36] de Ng Dick Bruijn,et al. The mathematical language AUTOMATH, its usage, and some of its extensions , 1970 .
[37] Roberto M. Amadio,et al. Domains and lambda-calculi , 1998, Cambridge tracts in theoretical computer science.
[38] Jean-Yves Girard,et al. Light Linear Logic , 1998, Inf. Comput..
[39] J. Girard,et al. Proofs and types , 1989 .
[40] Tristan Crolard,et al. Deriving a Hoare-Floyd logic for non-local jumps from a formulae-as-types notion of control , 2011, ArXiv.
[41] Glynn Winskel,et al. Linearity in process languages , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.
[42] William A. Howard,et al. The formulae-as-types notion of construction , 1969 .
[43] Paul Hudak,et al. Single-threaded polymorphic lambda calculus , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.
[44] Guillaume Munch-Maccagnoni. Focalisation and Classical Realisability , 2009, CSL.
[45] JEAN-MARC ANDREOLI,et al. Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..
[46] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[47] Martín Abadi,et al. The geometry of optimal lambda reduction , 1992, POPL '92.
[48] Radha Jagadeesan,et al. Games and Full Completeness for Multiplicative Linear Logic , 1994, J. Symb. Log..
[49] John Lamping. An algorithm for optimal lambda calculus reduction , 1989, POPL '90.
[50] J. Girard. Proof Theory and Logical Complexity , 1989 .
[51] Benjamin C. Pierce,et al. Linearity and the pi-calculus , 1999, TOPL.
[52] Per Martin-Löf,et al. Intuitionistic type theory , 1984, Studies in proof theory.
[53] Vincent Danos,et al. A new deconstructive logic: linear logic , 1997, Journal of Symbolic Logic.
[54] Dale Miller,et al. An Overview of Linear Logic Programming , 2003 .
[55] Pierre-Louis Curien,et al. Notes on game semantics , 2006 .
[56] S. Abramsky. Game Semantics , 1999 .
[57] Masahito Hasegawa. Linearly Used Effects: Monadic and CPS Transformations into the Linear Lambda Calculus , 2001, APLAS.
[58] Thomas Ehrhard,et al. Interpreting a finitary pi-calculus in differential interaction nets , 2007, Inf. Comput..
[59] Radha Jagadeesan,et al. Full Abstraction for PCF , 1994, Inf. Comput..
[60] Paul-André Melliès. Asynchronous games 4: a fully complete model of propositional linear logic , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).
[61] G. Longo,et al. Lambda-Calculus Models and Extensionality , 1980, Math. Log. Q..