Transient exposure to novel high temperatures reshapes coastal phytoplankton communities

[1]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[2]  Joshua D. Kling,et al.  Distinct Responses of the Nitrogen-Fixing Marine Cyanobacterium Trichodesmium to a Thermally Variable Environment as a Function of Phosphorus Availability , 2019, Front. Microbiol..

[3]  D. Vaulot,et al.  Bolidophyceae, a Sister Picoplanktonic Group of Diatoms – A Review , 2018, Front. Mar. Sci..

[4]  O. Bernard,et al.  Picoeukaryotes of the Micromonas genus: sentinels of a warming ocean , 2018, The ISME Journal.

[5]  M. Blades,et al.  Sensitivity of Colorectal Cancer to Arginine Deprivation Therapy is Shaped by Differential Expression of Urea Cycle Enzymes , 2018, Scientific Reports.

[6]  P. Mariani,et al.  Boom and Bust: Life History, Environmental Noise, and the (un)Predictability of Jellyfish Blooms , 2018, Front. Mar. Sci..

[7]  Fei-xue Fu,et al.  Ocean warming alleviates iron limitation of marine nitrogen fixation , 2018, Nature Climate Change.

[8]  Patrick L. Thompson,et al.  Nonlinear averaging of thermal experience predicts population growth rates in a thermally variable environment , 2018, bioRxiv.

[9]  M. O’Connor,et al.  Prior heat accumulation reduces survival during subsequent experimental heat waves , 2018 .

[10]  John A. Gittings,et al.  Impacts of warming on phytoplankton abundance and phenology in a typical tropical marine ecosystem , 2018, Scientific Reports.

[11]  Samuel B. Fey,et al.  Gradual plasticity alters population dynamics in variable environments: thermal acclimation in the green alga Chlamydomonas reinhartdii , 2017, Proceedings of the Royal Society B: Biological Sciences.

[12]  A. Buckling,et al.  Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom , 2017, bioRxiv.

[13]  Mridul K. Thomas,et al.  Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton , 2017, Global change biology.

[14]  Christopher A Klausmeier,et al.  Species packing in eco-evolutionary models of seasonally fluctuating environments. , 2017, Ecology letters.

[15]  Fei-xue Fu,et al.  Microorganisms and ocean global change , 2017, Nature Microbiology.

[16]  A. Witkowski,et al.  Towards a multigene phylogeny of the Cymatosiraceae (Bacillariophyta, Mediophyceae) I: novel taxa within the subfamily cymatosiroideae based on molecular and morphological data , 2017, Journal of phycology.

[17]  M. Kainz,et al.  Temperature increase and fluctuation induce phytoplankton biodiversity loss – Evidence from a multi‐seasonal mesocosm experiment , 2017, Ecology and evolution.

[18]  Xun Xu,et al.  A reference gene catalogue of the pig gut microbiome , 2016, Nature Microbiology.

[19]  F. Lantoine,et al.  Dynamics of phytoplankton communities in eutrophying tropical shrimp ponds affected by vibriosis. , 2016, Marine pollution bulletin.

[20]  T. Rynearson,et al.  Temporal variation of Skeletonema community composition from a long-term time series in Narragansett Bay identified using high-throughput DNA sequencing , 2016 .

[21]  Fei-xue Fu,et al.  A comparative study of iron and temperature interactive effects on diatoms and Phaeocystis antarctica from the Ross Sea, Antarctica , 2016 .

[22]  William J. Sydeman,et al.  Responses of Marine Organisms to Climate Change across Oceans , 2016, Front. Mar. Sci..

[23]  E. van Sebille,et al.  Drift in ocean currents impacts intergenerational microbial exposure to temperature , 2016, Proceedings of the National Academy of Sciences.

[24]  J. Fuhrman,et al.  Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. , 2016, Environmental microbiology.

[25]  Paul J. McMurdie,et al.  DADA2: High resolution sample inference from Illumina amplicon data , 2016, Nature Methods.

[26]  J. Fuhrman,et al.  Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom , 2016, Nature Microbiology.

[27]  Stéphane Audic,et al.  PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy , 2015, Molecular ecology resources.

[28]  C. Schaum,et al.  Environmental stability affects phenotypic evolution in a globally distributed marine picoplankton , 2015, The ISME Journal.

[29]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[30]  Fei-xue Fu,et al.  Comparative responses of two dominant Antarctic phytoplankton taxa to interactions between ocean acidification, warming, irradiance, and iron availability , 2014 .

[31]  Michael F. Wehner,et al.  Impacts of climate extremes on gross primary production under global warming , 2014 .

[32]  V. Savage,et al.  Increased temperature variation poses a greater risk to species than climate warming , 2014, Proceedings of the Royal Society B: Biological Sciences.

[33]  Fei-xue Fu,et al.  Differing responses of marine N2 fixers to warming and consequences for future diazotroph community structure , 2014 .

[34]  R. Irizarry,et al.  Accounting for cellular heterogeneity is critical in epigenome-wide association studies , 2014, Genome Biology.

[35]  E. Carpenter,et al.  Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2 , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[36]  Elena Litchman,et al.  Marine Phytoplankton Temperature versus Growth Responses from Polar to Tropical Waters – Outcome of a Scientific Community-Wide Study , 2013, PloS one.

[37]  Susan Holmes,et al.  phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data , 2013, PloS one.

[38]  Emily R. Davenport,et al.  Taxonomic Classification of Bacterial 16S rRNA Genes Using Short Sequencing Reads: Evaluation of Effective Study Designs , 2013, PloS one.

[39]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[40]  Stéphane Audic,et al.  The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy , 2012, Nucleic Acids Res..

[41]  Elena Litchman,et al.  A Global Pattern of Thermal Adaptation in Marine Phytoplankton , 2012, Science.

[42]  N. Nezlin,et al.  Phytoplankton blooms detected by SeaWiFS along the central and southern California coast , 2012 .

[43]  S. Dupont,et al.  Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions , 2012, Ecology and evolution.

[44]  G. Hays,et al.  Changes in marine dinoflagellate and diatom abundance under climate change , 2012 .

[45]  B. Green Chloroplast genomes of photosynthetic eukaryotes. , 2011, The Plant journal : for cell and molecular biology.

[46]  G. Woodward,et al.  Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems , 2011 .

[47]  David A. Caron,et al.  Seasonal analysis of protistan community structure and diversity at the USC Microbial Observatory (San Pedro Channel, North Pacific Ocean) , 2010 .

[48]  U. Sommer,et al.  Climate change and the spring bloom: a mesocosm study on the influence of light and temperature on phytoplankton and mesozooplankton , 2010 .

[49]  A. Tripati,et al.  Coupling of CO2 and Ice Sheet Stability Over Major Climate Transitions of the Last 20 Million Years , 2009, Science.

[50]  D. Hutchins,et al.  Effects of increased pCO2 and temperature on the North Atlantic spring bloom. I. The phytoplankton community and biogeochemical response , 2009 .

[51]  Melanie J. Leng,et al.  Tracer‐derived freshwater composition of the Siberian continental shelf and slope following the extreme Arctic summer of 2007 , 2009 .

[52]  F. Chavez,et al.  Diurnal carbon cycling in the surface ocean and lower atmosphere of Santa Monica Bay, California , 2009 .

[53]  S. Bograd,et al.  Patterns and controls of chlorophyll-a and primary productivity cycles in the Southern California Bight , 2008 .

[54]  Giacomo R. DiTullio,et al.  Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea , 2007 .

[55]  S. Levitus,et al.  Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems , 2007 .

[56]  Fei-xue Fu,et al.  EFFECTS OF INCREASED TEMPERATURE AND CO2 ON PHOTOSYNTHESIS, GROWTH, AND ELEMENTAL RATIOS IN MARINE SYNECHOCOCCUS AND PROCHLOROCOCCUS (CYANOBACTERIA) 1 , 2007 .

[57]  Stephen B. Weisberg,et al.  Blooms of Pseudo-nitzschia and domoic acid in the San Pedro Channel and Los Angeles harbor areas of the Southern California Bight, 2003-2004 , 2007 .

[58]  J. Hansen,et al.  Global temperature change , 2006, Proceedings of the National Academy of Sciences.

[59]  I. Hewson,et al.  Annually reoccurring bacterial communities are predictable from ocean conditions , 2006, Proceedings of the National Academy of Sciences.

[60]  H. Grossart,et al.  Marine diatom species harbour distinct bacterial communities. , 2005, Environmental microbiology.

[61]  M. J. Salinger Climate Variability and Change: Past, Present and Future – An Overview , 2005 .

[62]  Jon Norberg,et al.  Biodiversity and ecosystem functioning: A complex adaptive systems approach , 2004 .

[63]  J. Chun,et al.  Kordia algicida gen. nov., sp. nov., an algicidal bacterium isolated from red tide. , 2004, International journal of systematic and evolutionary microbiology.

[64]  T. Gregory,et al.  The correlation between rDNA copy number and genome size in eukaryotes. , 2003, Genome.

[65]  J. Weckesser,et al.  Characterization of a photosynthetic Euglena strain isolated from an acidic hot mud pool of a volcanic area of Costa Rica. , 2002, FEMS microbiology ecology.

[66]  Kenneth W. Bruland,et al.  Iron and macronutrients in California coastal upwelling regimes: Implications for diatom blooms , 2001 .

[67]  D. Hutchins,et al.  An iron limitation mosaic in the California upwelling regime , 1998 .

[68]  P. Falkowski,et al.  Biogeochemical Controls and Feedbacks on Ocean Primary Production , 1998, Science.

[69]  J. Raven,et al.  Temperature and algal growth , 1988 .

[70]  S. A. Tont Variability of diatom species populations: from days to years , 1987 .

[71]  J. Sharp,et al.  Determination of total dissolved phosphorus and particulate phosphorus in natural waters1 , 1980 .

[72]  E. A. Martinez Sensitivity of marine ciliates (Protozoa, ciliophora) to high thermal stress , 1980 .

[73]  The price of fast fashion , 2018, Nature Climate Change.

[74]  Wolfgang Huber,et al.  Love MI, Huber W, Anders S.. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol 15: 550 , 2014 .

[75]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[76]  F. Tuya,et al.  An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot , 2013 .

[77]  Jeffrey S. Racine,et al.  RStudio: A Platform-Independent IDE for R and Sweave , 2012 .

[78]  M. Strous,et al.  Candidatus 'Brocadia fulgida': an autofluorescent anaerobic ammonium oxidizing bacterium. , 2008, FEMS microbiology ecology.

[79]  Masson-Delmotte,et al.  The Physical Science Basis , 2007 .

[80]  F. Morel,et al.  Trace metal ion buffers and their use in culture studies , 2005 .

[81]  W. Richard,et al.  TEMPERATURE AND PHYTOPLANKTON GROWTH IN THE SEA , 1972 .

[82]  T. Parsons,et al.  A practical handbook of seawater analysis , 1968 .