Lecture notes from IPCO Summer School 2005 Fast Randomized Algorithms for Partitioning, Sparsification, and Solving Linear Systems

4 Combinatorial Preconditioners 6 4.1 Graphic Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.2 Graphic Inequalities with Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.3 Augmented Tree Preconditioners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.4 Sparsifying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.5 Proving sparsifiers exist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.6 History of Combinatorial Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . 13

[1]  Sanjeev Arora,et al.  0(sqrt (log n)) Approximation to SPARSEST CUT in Õ(n2) Time , 2004, FOCS.

[2]  Anil Joshi Topics in optimization and sparse linear systems , 1997 .

[3]  J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian , 1969 .

[4]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, WG.

[5]  Ojas Parekh,et al.  Finding effective support-tree preconditioners , 2005, SPAA '05.

[6]  Bruce Hendrickson,et al.  Support Theory for Preconditioning , 2003, SIAM J. Matrix Anal. Appl..

[7]  Sivan Toledo,et al.  Maximum‐weight‐basis preconditioners , 2004, Numer. Linear Algebra Appl..

[8]  M. Murty Ramanujan Graphs , 1965 .

[9]  Gary L. Miller,et al.  Performance evaluation of a new parallel preconditioner , 1995, Proceedings of 9th International Parallel Processing Symposium.

[10]  Miklós Simonovits,et al.  Random Walks in a Convex Body and an Improved Volume Algorithm , 1993, Random Struct. Algorithms.

[11]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[12]  Bruce Hendrickson,et al.  The Chaco user`s guide. Version 1.0 , 1993 .

[13]  J. Reif Efficient approximate solution of sparse linear systems , 1998 .

[14]  Van H. Vu,et al.  Spectral norm of random matrices , 2005, STOC '05.

[15]  Shang-Hua Teng,et al.  Solving Sparse, Symmetric, Diagonally-Dominant Linear Systems in Time O(m1.31) , 2003, ArXiv.

[16]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[17]  Don Coppersmith,et al.  On the Asymptotic Complexity of Matrix Multiplication , 1982, SIAM J. Comput..

[18]  Satish Rao,et al.  Expander flows, geometric embeddings and graph partitioning , 2004, STOC '04.

[19]  Shang-Hua Teng,et al.  Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems , 2003, STOC '04.

[20]  D. Rose,et al.  Generalized nested dissection , 1977 .

[21]  Sivan Toledo,et al.  Support-Graph Preconditioners , 2005, SIAM J. Matrix Anal. Appl..

[22]  Noga Alon,et al.  A Graph-Theoretic Game and Its Application to the k-Server Problem , 1995, SIAM J. Comput..

[23]  Santosh S. Vempala,et al.  On clusterings-good, bad and spectral , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[24]  Shang-Hua Teng,et al.  Lower-stretch spanning trees , 2004, STOC '05.

[25]  David R. Karger,et al.  Approximating s – t Minimum Cuts in ~ O(n 2 ) Time , 2007 .

[26]  A. George,et al.  Graph theory and sparse matrix computation , 1993 .

[27]  L. Trefethen,et al.  Numerical linear algebra , 1997 .