Integrated Nonreciprocal Photonic Devices With Dynamic Modulation

Nonreciprocal components, such as isolators and circulators, are crucial components for photonic systems. In this article, we review theoretical and experimental progress toward developing nonreciprocal photonic devices based on dynamic modulation. In particular, we focus on approaches that operate at optical wavelengths and device architectures that have the potential for chip-scale integration. We first discuss the requirements for constructing an isolator or circulator using dynamic modulation. We review a number of different isolator and circulator architectures, including waveguide and resonant devices, and describe their underlying operating principles. We then compare these device architectures from a system-level performance perspective, considering how their figures of merit, such as footprint, bandwidth, isolation, and insertion loss scale with respect to device parameters.

[1]  J. E. Bowers,et al.  Integrated Si3N4/SiO2 ultra high Q ring resonators , 2012, IEEE Photonics Conference 2012.

[2]  M. Tsang Cavity quantum electro-optics , 2010, 1003.0116.

[3]  C. Huyghebaert,et al.  Graphene–silicon phase modulators with gigahertz bandwidth , 2017, Nature Photonics.

[4]  Peter T. Rakich,et al.  Non-reciprocal interband Brillouin modulation , 2018, Nature Photonics.

[5]  Christopher V. Poulton,et al.  Electric field-induced second-order nonlinear optical effects in silicon waveguides , 2017 .

[6]  Zongfu Yu,et al.  What is — and what is not — an optical isolator , 2013, Nature Photonics.

[7]  Peter T. Rakich,et al.  Giant enhancement of stimulated Brillouin scattering in the sub-wavelength limit , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[8]  A. Scherer,et al.  Coupled-resonator optical waveguide: a proposal and analysis. , 1999, Optics letters.

[9]  John Kitching,et al.  Chip-scale atomic devices , 2006, Applied Physics Reviews.

[10]  T. McKenna,et al.  Electrical driving of X-band mechanical waves in a silicon photonic circuit , 2018, APL Photonics.

[11]  H. Callen,et al.  Irreversibility and Generalized Noise , 1951 .

[12]  D. Sounas,et al.  Composite Floquet scattering matrix for the analysis of time-modulated systems , 2017, 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[13]  M. Miri,et al.  Fundamentals of optical non-reciprocity based on optomechanical coupling , 2016, 1612.07375.

[14]  Wenhui Wang,et al.  All-Optical Switching of Two Continuous Waves in Few Layer Bismuthene Based on Spatial Cross-Phase Modulation , 2017 .

[15]  Andrea Alù,et al.  Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials , 2013, Nature Communications.

[16]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[17]  Z. Tang,et al.  A Full-Duplex Radio-Over-Fiber Link Based on a Dual-Polarization Mach–Zehnder Modulator , 2016, IEEE Photonics Technology Letters.

[18]  Shanhui Fan,et al.  Photonic Aharonov–Bohm effect in photon–phonon interactions , 2014, Nature Communications.

[19]  Nicolas Dupuis,et al.  Optical isolator using two tandem phase modulators. , 2011, Optics letters.

[20]  Michal Lipson,et al.  Silicon Optical Phased Array with High-Efficiency Beam Formation over 180 Degree Field of View , 2018 .

[21]  Michael R. Watts,et al.  Large-scale nanophotonic phased array , 2013, Nature.

[22]  Dirk Englund,et al.  Deep learning with coherent nanophotonic circuits , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[23]  Nabeel A. Riza,et al.  Silicon-photonics-based wideband radar beamforming: basic design , 2010 .

[24]  Michal Lipson,et al.  Non-reciprocal phase shift induced by an effective magnetic flux for light , 2014, Nature Photonics.

[25]  Alex Y. Song,et al.  Direction-dependent parity-time phase transition and nonreciprocal amplification with dynamic gain-loss modulation , 2018, Physical Review A.

[26]  Michal Lipson,et al.  Nanophotonic lithium niobate electro-optic modulators. , 2017, Optics express.

[27]  Zongfu Yu,et al.  Complete optical isolation created by indirect interband photonic transitions , 2008, OPTO.

[28]  M. Lipson,et al.  Subject Areas : Optics A Viewpoint on : Electrically Driven Nonreciprocity Induced by Interband Photonic Transition on a Silicon Chip , 2012 .

[29]  John E. Bowers,et al.  Integrated microwave photonics , 2015, 2015 International Topical Meeting on Microwave Photonics (MWP).

[31]  A. Metelmann,et al.  Nonreciprocal Photon Transmission and Amplification via Reservoir Engineering , 2015, 1502.07274.

[32]  R. Maurer,et al.  Low-noise nonreciprocal parametric amplifier with power matching at the input and output , 1963 .

[33]  K. Vahala,et al.  Soliton microcomb range measurement , 2017, Science.

[34]  E. Yamada,et al.  Over 67 GHz Bandwidth and 1.5 V Vπ InP-Based Optical IQ Modulator With n-i-p-n Heterostructure , 2017, Journal of Lightwave Technology.

[35]  Howard W. Johnson,et al.  High Speed Signal Propagation: Advanced Black Magic , 2003 .

[36]  L. Tong,et al.  All-optical graphene modulator based on optical Kerr phase shift , 2016 .

[37]  Risto Wichman,et al.  In-Band Full-Duplex Wireless: Challenges and Opportunities , 2013, IEEE Journal on Selected Areas in Communications.

[38]  Yan-Kai Tzeng,et al.  Nanodiamond Integration with Photonic Devices , 2016, Laser & Photonics Reviews.

[39]  S. Xiao,et al.  Modeling and measurement of losses in silicon-on-insulator resonators and bends. , 2007, Optics express.

[40]  A. K. Kamal,et al.  A Parametric Device as a Nonreciprocal Element , 1960, Proceedings of the IRE.

[41]  Jinzhong Yu,et al.  High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization. , 2013, Optics express.

[43]  Fabrizio Berizzi,et al.  A fully photonics-based coherent radar system , 2014, Nature.

[44]  S. Fan,et al.  Nonreciprocal Optical Dissipation Based on Direction-Dependent Rabi Splitting , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[45]  M. Lipson,et al.  Compact Electro-Optic Modulator on Silicon-on-Insulator Substrates using Cavities with Ultra-Small Modal Volumes , 2006, 3rd IEEE International Conference on Group IV Photonics, 2006..

[46]  Limin Tong,et al.  2D Materials for Optical Modulation: Challenges and Opportunities , 2017, Advanced materials.

[47]  M. Lipson,et al.  Low-loss composite photonic platform based on 2D semiconductor monolayers , 2019, Conference on Lasers and Electro-Optics.

[48]  Dong Hun Kim,et al.  On-chip optical isolation in monolithically integrated non-reciprocal optical resonators , 2011 .

[49]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[50]  T. Aalto,et al.  Sub-/spl mu/s switching time in silicon-on-insulator Mach-Zehnder thermooptic switch , 2004, IEEE Photonics Technology Letters.

[51]  R. C. Williamson,et al.  Submicrosecond submilliwatt silicon-on-insulator thermooptic switch , 2004, IEEE Photonics Technology Letters.

[52]  T. Simoyama,et al.  50-Gbps direct modulation using 1.3-µm AlGaInAs MQW distribute-reflector lasers , 2012, 2012 38th European Conference and Exhibition on Optical Communications.

[53]  Ian A. D. Williamson,et al.  Dual-Carrier Floquet Circulator with Time-Modulated Optical Resonators , 2017, ACS Photonics.

[54]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[55]  Michal Lipson,et al.  WDM-compatible mode-division multiplexing on a silicon chip , 2014, Nature Communications.

[56]  Tetsuya Mizumoto,et al.  Magneto-optical isolator with silicon waveguides fabricated by direct bonding , 2008 .

[57]  Gaurav Bahl,et al.  Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits , 2017, 1707.04276.

[58]  Zongfu Yu,et al.  Realizing effective magnetic field for photons by controlling the phase of dynamic modulation , 2012, Nature Photonics.

[59]  P. Winzer,et al.  Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages , 2018, Nature.

[60]  T. Asano,et al.  Photonic crystal nanocavity with a Q-factor of ~9 million. , 2014, Optics express.

[61]  Bahram Jalali,et al.  All optical switching and continuum generation in silicon waveguides. , 2004, Optics express.

[62]  Andrea Alù,et al.  Magnet-Free Circulator Based on Spatiotemporal Modulation of Photonic Crystal Defect Cavities , 2019, ACS Photonics.

[63]  Hong X. Tang,et al.  Strong Pockels materials , 2018, Nature Materials.

[64]  Michal Lipson,et al.  Inducing photonic transitions between discrete modes in a silicon optical microcavity. , 2008, Physical review letters.

[65]  Hiroshi Fukuda,et al.  Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator , 2017, Nature Photonics.

[66]  Ian A. D. Williamson,et al.  Kinetic inductance driven nanoscale 2D and 3D THz transmission lines , 2015, Scientific reports.

[67]  A. Chraplyvy,et al.  Regimes of feedback effects in 1.5-µm distributed feedback lasers , 1986 .

[68]  Zongfu Yu,et al.  Photonic Aharonov-Bohm effect based on dynamic modulation. , 2012, Physical review letters.

[69]  Filippo Scotti,et al.  Toward a New Generation of Radar Systems Based on Microwave Photonic Technologies , 2019, Journal of Lightwave Technology.

[70]  Rizwan Ahmad,et al.  Integration of millimeter-wave and optical link for duplex transmission of hierarchically modulated signal over a single carrier and fiber for future 5G communication systems , 2019, Telecommun. Syst..

[71]  Jingdong Luo,et al.  Terahertz all-optical modulation in a silicon–polymer hybrid system , 2006, Nature materials.

[72]  Miles H. Anderson,et al.  Microresonator-based solitons for massively parallel coherent optical communications , 2016, Nature.

[73]  Zheng Wang,et al.  Optical circulators in two-dimensional magneto-optical photonic crystals. , 2005 .

[74]  Kouji Nakahara,et al.  Direct Modulation at 56 and 50 Gb/s of 1.3- $\mu $ m InGaAlAs Ridge-Shaped-BH DFB Lasers , 2015, IEEE Photonics Technology Letters.

[75]  Gaurav Bahl,et al.  Non-reciprocal Brillouin scattering induced transparency , 2014, Nature Physics.

[76]  Fabio Sciarrino,et al.  Integrated photonic quantum technologies , 2019, Nature Photonics.

[77]  Optomechanically induced non-reciprocity in microring resonators. , 2011, Optics express.

[78]  Christopher J Sarabalis,et al.  Optomechanical antennas for on-chip beam-steering. , 2017, Optics express.

[79]  Weisheng Hu,et al.  Self-interference cancellation using dual-drive Mach-Zehnder modulator for in-band full-duplex radio-over-fiber system. , 2015, Optics express.

[80]  Zongfu Yu,et al.  Integrated Nonmagnetic Optical Isolators Based on Photonic Transitions $^{\ast}$ , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[81]  Shanhui Fan,et al.  Interband transitions in photonic crystals , 1999 .

[82]  D. Sandel,et al.  Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[83]  J. Chow,et al.  Active protection of a superconducting qubit with an interferometric Josephson isolator , 2019, Nature Communications.

[84]  Shanhui Fan,et al.  Complete All-Optical Silica Fiber Isolator via Stimulated Brillouin Scattering , 2011, Journal of Lightwave Technology.

[85]  J. Bowers,et al.  Intensity and Phase Modulators at 1.55 μm in GaAs/AlGaAs Layers Directly Grown on Silicon , 2018, Journal of Lightwave Technology.

[86]  Joseph M. Kahn,et al.  Broadband electro-optic frequency comb generation in a lithium niobate microring resonator , 2018, Nature.

[87]  Timo Aalto,et al.  Sub-s Switching Time in Silicon-on-Insulator Mach – Zehnder Thermooptic Switch , 2004 .

[88]  Zhiming M. Wang,et al.  Graphene-based optical modulators , 2012, Nanoscale Research Letters.

[89]  Michal Lipson,et al.  Graphene electro-optic modulator with 30 GHz bandwidth , 2015, Nature Photonics.

[90]  Andrea Alù,et al.  Nonreciprocity and magnetic-free isolation based on optomechanical interactions , 2016, Nature Communications.

[91]  C. Koos,et al.  Ultrafast optical ranging using microresonator soliton frequency combs , 2017, Science.

[92]  M. Lauermann,et al.  Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator , 2017, Optica.

[93]  Jie Luo,et al.  Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering , 2016, Nature Physics.

[94]  Charles H. Townes,et al.  Stark Effect in Rapidly Varying Fields , 1955 .

[95]  All-optical phase modulations in a silicon wire waveguide at ultralow light levels , 2009 .

[96]  John E. Bowers,et al.  Photonic Integrated Circuits Using Heterogeneous Integration on Silicon , 2018, Proceedings of the IEEE.

[97]  B. Anderson,et al.  On reciprocity and time-variable networks , 1965 .

[98]  Shanhui Fan,et al.  Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities , 2004, IEEE Journal of Quantum Electronics.

[99]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[100]  L. Tian,et al.  Optical directional amplification in a three-mode optomechanical system. , 2017, Optics express.

[101]  Juerg Leuthold,et al.  Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon , 2018, Nature Materials.

[102]  Ian A. D. Williamson,et al.  Broadband Optical Switch based on an Achromatic Photonic Gauge Potential in Dynamically Modulated Waveguides , 2018, Physical Review Applied.

[103]  Michael Hochberg,et al.  Broadband on-chip optical non-reciprocity using phase modulators. , 2013, Optics express.

[104]  B. Eggleton,et al.  Design for broadband on-chip isolator using Stimulated Brillouin Scattering in dispersion-engineered chalcogenide waveguides. , 2012, Optics express.

[105]  T. Baehr‐Jones,et al.  Experimental demonstration of broadband Lorentz non-reciprocity in an integrable photonic architecture based on Mach-Zehnder modulators. , 2014, Optics express.

[106]  Guang-Can Guo,et al.  Brillouin-scattering-induced transparency and non-reciprocal light storage , 2014, Nature Communications.

[107]  A. Butsch,et al.  Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre , 2011 .

[108]  Stephan W Koch,et al.  Microscopic theory of gain for an InGaN/AlGaN quantum well laser , 1997 .

[109]  Andrea Alù,et al.  Angular-Momentum-Biased Nanorings To Realize Magnetic-Free Integrated Optical Isolation , 2014 .

[110]  John Bowers,et al.  Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics , 2019, Optica.

[111]  B. Ilic,et al.  Acousto-optic modulation and opto-acoustic gating in piezo-optomechanical circuits. , 2016, Physical review applied.

[112]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[113]  S. Fan,et al.  Compact dynamic optical isolator based on tandem phase modulators. , 2019, Optics letters.

[114]  Floquet scattering theory of quantum pumps , 2002, cond-mat/0208356.

[115]  Chongjin Xie,et al.  50-Gb/s silicon quadrature phase-shift keying modulator. , 2012, Optics express.

[116]  D Vermeulen,et al.  Silicon photonics broadband modulation-based isolator. , 2014, Optics express.

[117]  H. Haus Electromagnetic Noise and Quantum Optical Measurements , 2000 .

[118]  Alexandre Blais,et al.  Widely Tunable On-Chip Microwave Circulator for Superconducting Quantum Circuits , 2017, 1707.04565.