The infrastructure of a global field and baby step-giant step algorithms
暂无分享,去创建一个
[1] Felix Fontein,et al. The infrastructure of a global field of arbitrary unit rank , 2008, Math. Comput..
[2] Johannes Buchmann,et al. On the infrastructure of the principal ideal class of an algebraic number field of unit rank one , 1988 .
[3] H. Appelgate,et al. Periodic expansion of modules and its relation to units , 1982 .
[4] A. Stein. Equivalences between elliptic curves and real quadratic congruence function fields , 1997 .
[5] K. Mahler,et al. An Analogue to Minkowski's Geometry of Numbers in a Field of Series , 1941 .
[6] Florian Hess,et al. Computing Riemann-Roch Spaces in Algebraic Function Fields and Related Topics , 2002, J. Symb. Comput..
[7] Kamal Khuri-Makdisi. Linear algebra algorithms for divisors on an algebraic curve , 2004, Math. Comput..
[8] H. Zassenhaus,et al. On effective computation of fundamental units. II , 1982 .
[9] H. C. Williams,et al. Continued fractions and number-theoretic computations , 1985 .
[10] Andreas Stein,et al. Some Methods for Evaluating the Regulator of a Real Quadratic Function Field , 1999, Exp. Math..
[11] Dino J. Lorenzini. An Invitation to Arithmetic Geometry , 1996 .
[12] Johannes Buchmann,et al. On the period length of the generalized Lagrange algorithm , 1987 .
[13] D. Shanks. Class number, a theory of factorization, and genera , 1971 .
[14] Andreas Stein,et al. Key-Exchange in Real Quadratic Congruence Function Fields , 1996, Des. Codes Cryptogr..
[15] Christoph Thiel,et al. Short Proofs Using Compact Representations of Algebraic Integers , 1995, J. Complex..
[16] Victor Shoup,et al. Lower Bounds for Discrete Logarithms and Related Problems , 1997, EUROCRYPT.
[17] David M Goldschmidt,et al. Algebraic Functions and Projective Curves , 2002 .
[18] G. Vetrovec. DES , 2021, Encyclopedia of Systems and Control.
[19] H. Lenstra. On the calculation of regulators and class numbers of quadratic fields , 1982 .
[20] Tanja Lange,et al. MATHEMATICAL BACKGROUND OF PUBLIC KEY CRYPTOGRAPHY , 2005 .
[21] Henning Stichtenoth,et al. Algebraic function fields and codes , 1993, Universitext.
[22] Pavel Zorin-Kranich,et al. Habilitationsschrift , 1970 .
[23] H. Takeuchi,et al. On the Units of Algebraic Number Fields , 1994 .
[24] Lothar Budach. Proceedings of the 8th International Symposium on Fundamentals of Computation Theory , 1991 .
[25] B. M. Fulk. MATH , 1992 .
[26] N. Koblitz. Elliptic curve cryptosystems , 1987 .
[27] Renate Scheidler. Ideal arithmetic and infrastructure in purely cubic function fields , 2001 .
[28] Steven D. Galbraith,et al. Efficient Hyperelliptic Arithmetic Using Balanced Representation for Divisors , 2008, ANTS.
[29] Yoonjin Lee,et al. Computation of the Fundamental Units and the Regulator of a Cyclic Cubic Function Field , 2003, Exp. Math..
[30] Rene Schoof,et al. Computing Arakelov class groups , 2008, 0801.3835.
[31] Sachar Paulus. On the Implementation of Cryptosystems Based on Real Quadratic Numberelds Extended Abstract , 2000 .
[32] J. Buchmann. A subexponential algorithm for the determination of class groups and regulators of algebraic number fields , 1990 .
[33] Michael J. Jacobson. The Efficiency and Security of a Real Quadratic Field Based-Key Exchange Protocol , 2001 .
[34] Detlef Hühnlein,et al. On the Implementation of Cryptosystems Based on Real Quadratic Number Fields , 2000, Selected Areas in Cryptography.
[35] Johannes A. Buchmann,et al. A Key Exchange System Based on Real Quadratic Fields , 1989, CRYPTO.
[36] J. Buchmann. On the computation of units and class numbers by a generalization of Lagrange's algorithm , 1987 .
[37] Helmut Hasse,et al. Number Theory , 2020, An Introduction to Probabilistic Number Theory.
[38] Tibor Juhas. The use of elliptic curves in cryptography , 2007 .
[39] J. Buchmann,et al. A Terr algorithm for computations in the infrastructure of real-quadratic number fields , 2006 .
[40] G. Frey. Applications of Arithmetical Geometry to Cryptographic Constructions , 2001 .
[41] Johannes A. Buchmann,et al. Computing the structure of a finite abelian group , 2005, Math. Comput..
[42] E. Artin. Algebraic Numbers and Algebraic Functions , 2006 .
[43] Max Deuring,et al. Lectures on the theory of algebraic functions of one variable , 1959 .
[44] Andreas Stein,et al. Unit Computation in Purely Cubic Function Fields of Unit Rank 1 , 1998, ANTS.
[45] G. Bergmann. Theorie der Netze , 1963 .
[46] Sachar Paulus,et al. Real and imaginary quadratic representations of hyperelliptic function fields , 1999, Math. Comput..
[47] D. Faddeev,et al. The theory of irrationalities of the third degree , 2009 .
[48] Edlyn Teske. Square-root algorithms for the discrete logarithm problem (a survey) , 2001 .
[49] Stephen C. Pohlig,et al. An Improved Algorithm for Computing Logarithms over GF(p) and Its Cryptographic Significance , 2022, IEEE Trans. Inf. Theory.
[50] Felix Fontein,et al. Groups from cyclic infrastructures and Pohlig-Hellman in certain infrastructures , 2008, Adv. Math. Commun..
[51] Andreas Stein,et al. An algorithm for determining the regulator and the fundamental unit of hyperelliptic congruence function field , 1991, ISSAC '91.
[52] Edlyn Teske,et al. The Pohlig-Hellman Method Generalized for Group Structure Computation , 1999, J. Symb. Comput..
[53] S. A. Sherman,et al. Providence , 1906 .
[54] Andreas Stein,et al. Optimized Baby Step-Giant Step Methods , 2005 .
[55] Andreas Stein,et al. Cryptographic protocols on real hyperelliptic curves , 2007, Adv. Math. Commun..
[56] Johannes A. Buchmann,et al. A key-exchange system based on imaginary quadratic fields , 1988, Journal of Cryptology.
[57] Andreas Stein,et al. An Improved Method of Computing the Regulator of a Real Quadratic Function Field , 1998, ANTS.
[58] Steven D. Galbraith,et al. Arithmetic on superelliptic curves , 2002 .
[59] D. Cantor. Computing in the Jacobian of a hyperelliptic curve , 1987 .
[60] M. Maurer,et al. Regulator approximation and fundamental unit computation for real-quadratic orders , 2000 .
[61] Edlyn Teske,et al. A space efficient algorithm for group structure computation , 1998, Math. Comput..
[62] J. Davenport. Editor , 1960 .
[63] H. Minkowski,et al. Geometrie der Zahlen , 1896 .
[64] Hugh C. Williams,et al. A Rapid Method of Evaluating the Regulator and Class Number of a Pure Cubic Field , 1983 .
[65] Kamal Khuri-Makdisi,et al. Asymptotically fast group operations on Jacobians of general curves , 2004, Math. Comput..
[66] Michael Rosen,et al. Number Theory in Function Fields , 2002 .
[67] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[68] David C. Terr. A modification of Shanks' baby-step giant-step algorithm , 2000, Math. Comput..
[69] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[70] Michael J. Jacobson,et al. An Improved Real-Quadratic-Field-Based Key Exchange Procedure , 2005, Journal of Cryptology.
[71] Michael Pohst,et al. An effective number geometric method of computing the fundamental units of an algebraic number field , 1977 .
[72] Scott A. Vanstone,et al. Discrete Logarithm Based Cryptosystems in Quadratic Function Fields of Characteristic 2 , 1998, Des. Codes Cryptogr..
[73] Johannes A. Buchmann. Number Theoretic Algorithms and Cryptology , 1991, FCT.
[74] Sachar Paulus,et al. Lattice Basis Reduction in Function Fields , 1998, ANTS.