Hydrogenated borophene/blue phosphorene: A novel two-dimensional donor-acceptor heterostructure with shrunken interlayer distance as a potential anode material for Li/Na ion batteries

[1]  S. Prabhu,et al.  Binder-free heterostructure (g-C3N4/PPy) based thin film on semi-flexible nickel foam via hybrid spray technique for energy storage application , 2020 .

[2]  R. Wu,et al.  Multifunctional Lateral Transition‐Metal Disulfides Heterojunctions , 2020, Advanced Functional Materials.

[3]  D. Jiang,et al.  Graphene-like C3N/blue phosphorene heterostructure as a potential anode material for Li/Na-ion batteries: A first principles study , 2020 .

[4]  Jose L. Mendoza-Cortes,et al.  Impact of Surface Modification on the Li, Na, and K Intercalation Efficiency and Capacity of Few-Layer Graphene Electrodes , 2019 .

[5]  Xiaoxu Wang,et al.  Theoretical investigating of graphene/antimonene heterostructure as a promising high cycle capability anodes for fast-charging lithium ion batteries , 2019, Applied Surface Science.

[6]  Ying Dai,et al.  Semimetallic Si3C as a high capacity anode material for advanced lithium ion batteries , 2019, Applied Surface Science.

[7]  Adam H. Woomer,et al.  Bonding in 2D donor-acceptor heterostructures. , 2019, Journal of the American Chemical Society.

[8]  R. Wu,et al.  Unveiling the Electric-Current-Limiting and Photodetection Effect in Two-Dimensional Hydrogenated Borophene , 2019, Physical Review Applied.

[9]  Hui Yan,et al.  C3N/phosphorene heterostructure: a promising anode material in lithium-ion batteries , 2019, Journal of Materials Chemistry A.

[10]  Q. Jiang,et al.  Potential application of 2D monolayer β-GeSe as an anode material in Na/K ion batteries. , 2018, Physical chemistry chemical physics : PCCP.

[11]  Jian Tian,et al.  Hexagonal Boron Nitride/Blue Phosphorene Heterostructure as a Promising Anode Material for Li/Na-Ion Batteries , 2018, The Journal of Physical Chemistry C.

[12]  C. V. Singh,et al.  2D Hydrogenated graphene-like borophene as a high capacity anode material for improved Li/Na ion batteries: A first principles study , 2018, Materials Today Energy.

[13]  Biswarup Pathak,et al.  Graphene-like Carbon–Nitride Monolayer: A Potential Anode Material for Na- and K-Ion Batteries , 2018 .

[14]  X. Bao,et al.  Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries , 2017 .

[15]  A. Hirata,et al.  Formation and Characterization of Hydrogen Boride Sheets Derived from MgB2 by Cation Exchange. , 2017, Journal of the American Chemical Society.

[16]  Yury Gogotsi,et al.  Two-dimensional heterostructures for energy storage , 2017, Nature Energy.

[17]  X. Bao,et al.  Ti3C2 MXene-Derived Sodium/Potassium Titanate Nanoribbons for High-Performance Sodium/Potassium Ion Batteries with Enhanced Capacities. , 2017, ACS nano.

[18]  S. Karmakar,et al.  Capping Black Phosphorene by h-BN Enhances Performances in Anodes for Li and Na Ion Batteries , 2016 .

[19]  R. Ruoff,et al.  Two‐Dimensional Materials for Beyond‐Lithium‐Ion Batteries , 2016 .

[20]  Hao Liu,et al.  First-Principles Study of Phosphorene and Graphene Heterostructure as Anode Materials for Rechargeable Li Batteries. , 2015, The journal of physical chemistry letters.

[21]  R. Ruoff,et al.  Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage , 2015, Science.

[22]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[23]  Martin Pumera,et al.  Layered transition metal dichalcogenides for electrochemical energy generation and storage , 2014 .

[24]  Yury Gogotsi,et al.  25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials , 2014, Advanced materials.

[25]  Gurpreet Singh,et al.  MoS2/graphene composite paper for sodium-ion battery electrodes. , 2014, ACS nano.

[26]  Zhongfang Chen,et al.  Metallic VS2 Monolayer: A Promising 2D Anode Material for Lithium Ion Batteries , 2013 .

[27]  L. Qu,et al.  All‐Graphene Core‐Sheath Microfibers for All‐Solid‐State, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles , 2013, Advanced materials.

[28]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[29]  Wanlin Guo,et al.  Two-dimensional tetragonal TiC monolayer sheet and nanoribbons. , 2012, Journal of the American Chemical Society.

[30]  Jiehua Liu,et al.  Two‐Dimensional Nanoarchitectures for Lithium Storage , 2012, Advanced materials.

[31]  Yongyao Xia,et al.  Ti-based compounds as anode materials for Li-ion batteries , 2012 .

[32]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[33]  P. He,et al.  Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries , 2012 .

[34]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[35]  Kun Chang,et al.  L-cysteine-assisted synthesis of layered MoS₂/graphene composites with excellent electrochemical performances for lithium ion batteries. , 2011, ACS nano.

[36]  Haisheng Chen,et al.  Progress in electrical energy storage system: A critical review , 2009 .

[37]  M. Armand,et al.  Building better batteries , 2008, Nature.

[38]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[39]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[40]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[41]  B. Delley From molecules to solids with the DMol3 approach , 2000 .

[42]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[43]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[44]  M. Spencer,et al.  Theoretical Studies of Functionalised Silicene , 2016 .

[45]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .