The Erwin Schrr Odinger International Institute for Mathematical Physics Boltzmann's Ergodic Hypothesis, a Conjecture for Centuries?

An overview of the history of Ludwig Boltzmann’s more than one hundred year old ergodic hypothesis is given. The existing main results, the majority of which is connected with the theory of billiards, are surveyed, and some perspectives of the theory and interesting and realistic problems are also mentioned.

[1]  D. Szász,et al.  A “Transversal” Fundamental Theorem for semi-dispersing billiards , 1990 .

[2]  A. Kolmogorov On conservation of conditionally periodic motions for a small change in Hamilton's function , 1954 .

[3]  S. Varadhan,et al.  Hydrodynamical limit for a Hamiltonian system with weak noise , 1993 .

[4]  D. Szász Ergodicity of classical billiard balls , 1993 .

[5]  R. Alexander Time evolution for infinitely many hard spheres , 1976 .

[6]  J. Moser On invariant curves of area-preserving mappings of an anulus , 1962 .

[7]  M. Wojtkowski Linearly stable orbits in 3 dimensional billiards , 1990 .

[8]  N. Chernov,et al.  Limit theorems and Markov approximations for chaotic dynamical systems , 1995 .

[9]  O. Lanford Time evolution of large classical systems , 1975 .

[10]  B. O. Koopman,et al.  Recent Contributions to the Ergodic Theory. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[11]  S. Goldstein,et al.  Ergodic properties of a system in contact with a heat bath: A one dimensional model , 1982 .

[12]  Kenneth R. Meyer,et al.  Generic Hamiltonian dynamical systems are neither integrable nor ergodic , 1974 .

[13]  C. Liverani,et al.  Potentials on the two-torus for which the Hamiltonian flow is ergodic , 1991 .

[14]  D. Szász,et al.  The problem of recurrence for Lorentz processes , 1985 .

[15]  Antonio Giorgilli,et al.  On the problem of energy equipartition for large systems of the Fermi-Pasta-Ulam type: analytical and numerical estimates , 1992 .

[16]  Carlangelo Liverani,et al.  Ergodicity in Hamiltonian Systems , 1992, math/9210229.

[17]  V. I. Arnol'd,et al.  PROOF OF A THEOREM OF A.?N.?KOLMOGOROV ON THE INVARIANCE OF QUASI-PERIODIC MOTIONS UNDER SMALL PERTURBATIONS OF THE HAMILTONIAN , 1963 .

[18]  D. Szász,et al.  Ergodic properties of semi-dispersing billiards. I. Two cylindric scatterers in the 3D torus , 1989 .

[19]  T. Funaki,et al.  Stationary states of random Hamiltonian systems , 1994 .

[20]  C. Froeschlé,et al.  Stochasticity of dynamical systems with increasing number of degrees of freedom , 1975 .

[21]  Ergodic properties of an ideal gas with an infinite number of degrees of freedom , 1971 .

[22]  Ergodic properties of the lorentz gas , 1979 .

[23]  D. Szász,et al.  The K-property of three billiard balls , 1991 .

[24]  G. Birkhoff Proof of the Ergodic Theorem , 1931, Proceedings of the National Academy of Sciences.

[25]  S. Ulam,et al.  Studies of nonlinear problems i , 1955 .

[26]  D. Szász,et al.  The K-property of 4D billiards with nonorthogonal cylindric scatterers , 1994 .

[27]  Y. Sinai,et al.  Ergodic properties of a semi-infinite one-dimensional system of statistical mechanics , 1985 .

[28]  Connectance of dynamical systems with increasing number of degrees of freedom , 1978 .

[29]  A. Knauf Ergodic and topological properties of coulombic periodic potentials , 1987 .

[30]  Perturbed billiard systems. II. Bernoulli properties , 1981 .

[31]  L. Boltzmann Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen , 1970 .

[32]  Maciej P. Wojtkowski,et al.  A system of one dimensional balls with gravity , 1990 .

[33]  On the division of quasi-polynomials , 1971 .

[34]  Maciej P. Wojtkowski,et al.  The system of one dimensional balls in an external field. II , 1990 .

[35]  L. Bunimovich,et al.  Ergodic systems ofn balls in a billiard table , 1992 .

[36]  D. Szász The K-property of “orthogonal” cylindric billiards , 1994 .

[37]  I. Kubo Perturbed billiard systems, I. The ergodicity of the motion of a particle in a compound central field , 1976, Nagoya Mathematical Journal.

[38]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[39]  D. Szász,et al.  The K-property of Hamiltonian systems with restricted hard ball interactions , 1995 .

[40]  D. Szász,et al.  TheK-property of four billiard balls , 1992 .

[41]  J. Neumann,et al.  Beweis des Ergodensatzes und desH-Theorems in der neuen Mechanik , 1929 .

[42]  J. R. Buchler,et al.  Chaos in astrophysics , 1985 .

[43]  G. A. Hedlund,et al.  The dynamics of geodesic flows , 1939 .

[44]  L. Galgani Ordered and Chaotic Motions in Hamiltonian Systems and the Problem of Energy Partition , 1985 .

[45]  École d'été de physique théorique,et al.  Comportement chaotique des systèmes déterministes : Les Houches, session XXXVI, 29 juin-31 juillet 1981 = Chaotic behaviour of deterministic systems , 1983 .

[46]  Y. Sinai,et al.  Dynamical systems with elastic reflections , 1970 .

[47]  Nándor Simányi,et al.  The K-property ofN billiard balls I , 1992 .

[48]  ON A FUNDAMENTAL THEOREM IN THE THEORY OF DISPERSING BILLIARDS , 1973 .

[49]  G. Gallavotti Ergodicity, ensembles, irreversibility in Boltzmann and beyond , 1994, chao-dyn/9403004.

[50]  A. Krámli,et al.  A “transversal” fundamental theorem for semi-dispersing billiards , 1990 .

[51]  L. Erdős,et al.  Ergodic properties of the multidimensional rayleigh gas with a semipermeable barrier , 1990 .