The Erwin Schrr Odinger International Institute for Mathematical Physics Boltzmann's Ergodic Hypothesis, a Conjecture for Centuries?
暂无分享,去创建一个
[1] D. Szász,et al. A “Transversal” Fundamental Theorem for semi-dispersing billiards , 1990 .
[2] A. Kolmogorov. On conservation of conditionally periodic motions for a small change in Hamilton's function , 1954 .
[3] S. Varadhan,et al. Hydrodynamical limit for a Hamiltonian system with weak noise , 1993 .
[4] D. Szász. Ergodicity of classical billiard balls , 1993 .
[5] R. Alexander. Time evolution for infinitely many hard spheres , 1976 .
[6] J. Moser. On invariant curves of area-preserving mappings of an anulus , 1962 .
[7] M. Wojtkowski. Linearly stable orbits in 3 dimensional billiards , 1990 .
[8] N. Chernov,et al. Limit theorems and Markov approximations for chaotic dynamical systems , 1995 .
[9] O. Lanford. Time evolution of large classical systems , 1975 .
[10] B. O. Koopman,et al. Recent Contributions to the Ergodic Theory. , 1932, Proceedings of the National Academy of Sciences of the United States of America.
[11] S. Goldstein,et al. Ergodic properties of a system in contact with a heat bath: A one dimensional model , 1982 .
[12] Kenneth R. Meyer,et al. Generic Hamiltonian dynamical systems are neither integrable nor ergodic , 1974 .
[13] C. Liverani,et al. Potentials on the two-torus for which the Hamiltonian flow is ergodic , 1991 .
[14] D. Szász,et al. The problem of recurrence for Lorentz processes , 1985 .
[15] Antonio Giorgilli,et al. On the problem of energy equipartition for large systems of the Fermi-Pasta-Ulam type: analytical and numerical estimates , 1992 .
[16] Carlangelo Liverani,et al. Ergodicity in Hamiltonian Systems , 1992, math/9210229.
[17] V. I. Arnol'd,et al. PROOF OF A THEOREM OF A.?N.?KOLMOGOROV ON THE INVARIANCE OF QUASI-PERIODIC MOTIONS UNDER SMALL PERTURBATIONS OF THE HAMILTONIAN , 1963 .
[18] D. Szász,et al. Ergodic properties of semi-dispersing billiards. I. Two cylindric scatterers in the 3D torus , 1989 .
[19] T. Funaki,et al. Stationary states of random Hamiltonian systems , 1994 .
[20] C. Froeschlé,et al. Stochasticity of dynamical systems with increasing number of degrees of freedom , 1975 .
[21] Ergodic properties of an ideal gas with an infinite number of degrees of freedom , 1971 .
[22] Ergodic properties of the lorentz gas , 1979 .
[23] D. Szász,et al. The K-property of three billiard balls , 1991 .
[24] G. Birkhoff. Proof of the Ergodic Theorem , 1931, Proceedings of the National Academy of Sciences.
[25] S. Ulam,et al. Studies of nonlinear problems i , 1955 .
[26] D. Szász,et al. The K-property of 4D billiards with nonorthogonal cylindric scatterers , 1994 .
[27] Y. Sinai,et al. Ergodic properties of a semi-infinite one-dimensional system of statistical mechanics , 1985 .
[28] Connectance of dynamical systems with increasing number of degrees of freedom , 1978 .
[29] A. Knauf. Ergodic and topological properties of coulombic periodic potentials , 1987 .
[30] Perturbed billiard systems. II. Bernoulli properties , 1981 .
[31] L. Boltzmann. Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen , 1970 .
[32] Maciej P. Wojtkowski,et al. A system of one dimensional balls with gravity , 1990 .
[33] On the division of quasi-polynomials , 1971 .
[34] Maciej P. Wojtkowski,et al. The system of one dimensional balls in an external field. II , 1990 .
[35] L. Bunimovich,et al. Ergodic systems ofn balls in a billiard table , 1992 .
[36] D. Szász. The K-property of “orthogonal” cylindric billiards , 1994 .
[37] I. Kubo. Perturbed billiard systems, I. The ergodicity of the motion of a particle in a compound central field , 1976, Nagoya Mathematical Journal.
[38] B. O. Koopman,et al. Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.
[39] D. Szász,et al. The K-property of Hamiltonian systems with restricted hard ball interactions , 1995 .
[40] D. Szász,et al. TheK-property of four billiard balls , 1992 .
[41] J. Neumann,et al. Beweis des Ergodensatzes und desH-Theorems in der neuen Mechanik , 1929 .
[42] J. R. Buchler,et al. Chaos in astrophysics , 1985 .
[43] G. A. Hedlund,et al. The dynamics of geodesic flows , 1939 .
[44] L. Galgani. Ordered and Chaotic Motions in Hamiltonian Systems and the Problem of Energy Partition , 1985 .
[45] École d'été de physique théorique,et al. Comportement chaotique des systèmes déterministes : Les Houches, session XXXVI, 29 juin-31 juillet 1981 = Chaotic behaviour of deterministic systems , 1983 .
[46] Y. Sinai,et al. Dynamical systems with elastic reflections , 1970 .
[47] Nándor Simányi,et al. The K-property ofN billiard balls I , 1992 .
[48] ON A FUNDAMENTAL THEOREM IN THE THEORY OF DISPERSING BILLIARDS , 1973 .
[49] G. Gallavotti. Ergodicity, ensembles, irreversibility in Boltzmann and beyond , 1994, chao-dyn/9403004.
[50] A. Krámli,et al. A “transversal” fundamental theorem for semi-dispersing billiards , 1990 .
[51] L. Erdős,et al. Ergodic properties of the multidimensional rayleigh gas with a semipermeable barrier , 1990 .