Transient characterization of concentration-encoded molecular communication with sinusoidal stimulation

In this paper we present an analysis of transient loss and detection noise margin of a molecular communication system based on sinusoidal stimulation. The molecular propagation channel is based on ideal diffusion of molecules. A set of possible performance metrics has been proposed and their characteristics have been analyzed for various operating frequencies of the stimulation. Transient loss and detection noise margin have shown a significant dependence on communication range and operating frequency in a noiseless channel. Finally, the effectiveness of the metrics in a frequency-shift keying (FSK) modulated scheme has been explained.