Institute for Mathematical Physics Universal Bounds for Traces of the Dirichlet Laplace Operator Universal Bounds for Traces of the Dirichlet Laplace Operator

We derive upper bounds for the trace of the heat kernel Z(t) of the Dirichlet Laplace operator in an open set �¶ �¼ Rd, with d  2. In domains of finite volume the result improves an inequality of Kac. Using the same methods we give bounds on Z(t) in domains of infinite volume. For domains of finite volume the bound on Z(t) decays exponentially as t tends to infinity and it contains the sharp first term and a correction term reflecting the properties of the short-time asymptotics of Z(t). To prove the result, we employ refined Berezin.Li.Yau inequalities for eigenvalue means.

[1]  E. Davies,et al.  Trace properties of the Dirichlet Laplacian , 1985 .

[2]  T. Weidl,et al.  Improved Berezin-Li-Yau inequalities with a remainder term , 2007, 0711.4925.

[3]  S. Minakshisundaram,et al.  Eigenfunctions on Riemannian Manifolds , 1953 .

[4]  E. Lieb,et al.  Segregation in the Falicov--Kimball Model , 2001, math-ph/0107003.

[5]  P. Trillenberg,et al.  Refined asymptotic expansion for the partition function of unbounded quantum billiards , 1990 .

[6]  H. McKean,et al.  Curvature and the Eigenvalues of the Laplacian , 1967 .

[7]  E. Lieb,et al.  On semi-classical bounds for eigenvalues of Schrödinger operators , 1978 .

[8]  V. Ivrii Microlocal Analysis and Precise Spectral Asymptotics , 1998 .

[9]  Claudio Perez Tamargo Can one hear the shape of a drum , 2008 .

[10]  M. Berg On the spectrum of the Dirichlet Laplacian for horn-shaped regions in Rn with infinite volume , 1984 .

[11]  A. Melas A lower bound for sums of eigenvalues of the Laplacian , 2002 .

[12]  Sharp Lieb-Thirring inequalities in high dimensions , 1999, math-ph/9903007.

[13]  Lance Smith,et al.  The asymptotics of the heat equation for a boundary value problem , 1981 .

[14]  L. Hermi,et al.  On Riesz Means of Eigenvalues , 2007, 0712.4088.

[15]  M. Berg On the asymptotics of the heat equation and bounds on traces associated with the Dirichlet Laplacian , 1987 .

[16]  J. Fleckinger,et al.  Heat Equation on the Triadic Von Koch Snowflake: Asymptotic and Numerical Analysis , 1995 .

[17]  J. M. Luttinger Generalized isoperimetric inequalities. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. Kac On Some Connections between Probability Theory and Differential and Integral Equations , 1951 .

[19]  Russell M. Brown The trace of the heat kernel in Lipschitz domains , 1993 .

[20]  M. Berg A uniform bound on trace (etΔ) for convex regions inRn with smooth boundaries , 1984 .

[21]  E. Krahn,et al.  Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises , 1925 .

[22]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[23]  Hynek Kovařík,et al.  Two-Dimensional Berezin-Li-Yau Inequalities with a Correction Term , 2008, 0802.2792.

[24]  René Carmona,et al.  Can one hear the dimension of a fractal? , 1986 .