Synthetic Spectra and Colors of Young Giant Planet Atmospheres: Effects of Initial Conditions and Atmospheric Metallicity

We examine the spectra and infrared colors of the cool, methane-dominated atmospheres at Teff ≤ 1400 K expected for young gas giant planets. We couple these spectral calculations to an updated version of the Marley et al. giant planet thermal evolution models that include formation by core accretion-gas capture. These relatively cool "young Jupiters" can be 1-6 mag fainter than predicted by standard cooling tracks that include a traditional initial condition, which may provide a diagnostic of formation. If correct, this would make true Jupiter-like planets much more difficult to detect at young ages than previously thought. Since Jupiter and Saturn are of distinctly supersolar composition, we examine emitted spectra for model planets at both solar metallicity and a metallicity of 5 times solar. These metal-enhanced young Jupiters have lower pressure photospheres than field brown dwarfs of the same effective temperatures arising from both lower surface gravities and enhanced atmospheric opacity. We highlight several diagnostics for enhanced metallicity. A stronger CO absorption band at 4.5 μm for the warmest objects is predicted. At all temperatures, enhanced flux in K band is expected due to reduced collisional induced absorption by H2. This leads to correspondingly redder near-infrared colors, which are redder than solar metallicity models with the same surface gravity by up to 0.7 in J − K and 1.5 in H − K. Molecular absorption band depths increase as well, most significantly for the coolest objects. We also qualitatively assess the changes to emitted spectra due to nonequilibrium chemistry.

[1]  T. Guillot,et al.  Are the Giant Planets Fully Convective , 1994 .

[2]  Ricardo Hueso,et al.  The composition of Jupiter: sign of a (relatively) late formation in a chemically evolved protosolar disc , 2006 .

[3]  B. Oppenheimer,et al.  The Gemini Deep Planet Survey , 2007, 0705.4290.

[4]  Space Science Reviews , 1962, Nature.

[5]  Michael H. Wong,et al.  Composition and origin of the atmosphere of Jupiter—an update, and implications for the extrasolar giant planets , 2003 .

[6]  A. Cameron,et al.  Models of the Giant Planets , 1974 .

[7]  K. Lodders Alkali Element Chemistry in Cool Dwarf Atmospheres , 1999 .

[8]  Yann Alibert,et al.  New Jupiter and Saturn Formation Models Meet Observations , 2005, astro-ph/0504598.

[9]  I. Hubeny,et al.  Possible Solutions to the Radius Anomalies of Transiting Giant Planets , 2006 .

[10]  Phase separation in giant planets: inhomogeneous evolution of Saturn , 2003, astro-ph/0305031.

[11]  Mark S. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006 .

[12]  F. Allard,et al.  Evolutionary models for low-mass stars and brown dwarfs: uncertainties and limits at very young ages , 2002 .

[13]  P. Drossart,et al.  Carbon Monoxide on Jupiter: Evidence for Both Internal and External Sources , 2002 .

[14]  A. Burrows,et al.  Theoretical Spectral Models of T Dwarfs at Short Wavelengths and Their Comparison with Data , 2001, astro-ph/0109227.

[15]  A. Ingersoll,et al.  Interpretation of Galileo Probe Data and Implications for Jupiter's Dry Downdrafts , 1998 .

[16]  Andrew S. Ackerman,et al.  Precipitating Condensation Clouds in Substellar Atmospheres , 2001, astro-ph/0103423.

[17]  T. Guillot,et al.  A Nongray Theory of Extrasolar Giant Planets and Brown Dwarfs , 1997, astro-ph/9705201.

[18]  D. Mouillet,et al.  Giant Planet Companion to 2MASSW J1207334-393254 , 2005 .

[19]  R. Taam,et al.  The evolution of protostars. I - Global formulation and results , 1980 .

[20]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[21]  J. Pinto,et al.  Estimation of the reaction rate for the formation of CH3O from H + H2CO: implications for chemistry in the Solar System. , 1988, Icarus.

[22]  P. J. Schinder,et al.  Temperatures, Winds, and Composition in the Saturnian System , 2005, Science.

[23]  F. Allard,et al.  Evolutionary Models for Very Low-Mass Stars and Brown Dwarfs with Dusty Atmospheres , 2000 .

[24]  Masahiro Ikoma,et al.  Formation of Giant Planets: Dependences on Core Accretion Rate and Grain Opacity , 2000 .

[25]  A. Moro-martin,et al.  A Survey for Massive Giant Planets in Debris Disks with Evacuated Inner Cavities , 2007, 0710.0206.

[26]  et al,et al.  Near-Infrared Photometry and Spectroscopy of L and T Dwarfs: The Effects of Temperature, Clouds, and Gravity , 2004, astro-ph/0402451.

[27]  C P McKay,et al.  Thermal structure of Uranus' atmosphere. , 1999, Icarus.

[28]  A. Burrows,et al.  A Systematic Study of Departures from Chemical Equilibrium in the Atmospheres of Substellar Mass Objects , 2007, 0705.3922.

[29]  A. Burrows,et al.  The effect of gas and grain opacity on the cooling of brown dwarfs , 1989 .

[30]  M. Marley,et al.  Line and Mean Opacities for Ultracool Dwarfs and Extrasolar Planets , 2007, 0706.2374.

[31]  David R. Alexander,et al.  THE LIMITING EFFECTS OF DUST IN BROWN DWARF MODEL ATMOSPHERES , 2001 .

[32]  P. Bodenheimer Contraction models for the evolution of Jupiter , 1976 .

[33]  E. Lellouch,et al.  Photochemistry and diffusion in Jupiter's stratosphere: Constraints from ISO observations and comparisons with other giant planets , 2005 .

[34]  Discovery of Two T Dwarf Companions with the Spitzer Space Telescope , 2006, astro-ph/0609464.

[35]  D. SaumonT. Guillot Shock Compression of Deuterium and the Interiors of Jupiter and Saturn , 2004 .

[36]  Jan Swevers,et al.  Ground-based and airborne instrumentation for astronomy , 2010 .

[37]  Mark S. Marley,et al.  Analysis of Spitzer Spectra of Irradiated Planets: Evidence for Water Vapor? , 2007, 0705.2457.

[38]  W. Vacca,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 ATMOSPHERIC PARAMETERS OF FIELD L AND T DWARFS 1 , 2022 .

[39]  K. Lodders,et al.  Atmospheric Chemistry of the Brown Dwarf Gliese 229B: Thermochemical Equilibrium Predictions , 1996 .

[40]  B. Fegley,et al.  Chemical Constraints on the Water and Total Oxygen Abundances in the Deep Atmosphere of Saturn , 2004, astro-ph/0501128.

[41]  R. Prinn,et al.  Carbon monoxide on jupiter and implications for atmospheric convection. , 1977, Science.

[42]  F. Allard,et al.  A new model for brown dwarf spectra including accurate unified line shape theory for the Na I and K I resonance line profiles , 2003 .

[43]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[44]  J. Pollack,et al.  The structure and evolution of Jupiter - The fluid contraction stage , 1975 .

[45]  Lisa Poyneer,et al.  The Gemini Planet Imager , 2006, SPIE Astronomical Telescopes + Instrumentation.

[46]  T. Guillot A COMPARISON OF THE INTERIORS OF JUPITER AND SATURN , 1999, astro-ph/9907402.

[47]  Erratum: Enrichments in Volatiles in Jupiter: A New Interpretation of the Galileo Measurements , 2001 .

[48]  John W. Mason Astrophysics update 2 , 2006 .

[49]  D. Stevenson Cosmochemistry and structure of the giant planets and their satellites , 1985 .

[50]  Ignasi Ribas,et al.  A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars , 2006, astro-ph/0605751.

[51]  M. Marley,et al.  On the Luminosity of Young Jupiters , 2006, astro-ph/0609739.

[52]  Ammonia as a tracer of chemical equilibrium in the T7.5 dwarf Gliese 570D , 2006, astro-ph/0605563.

[53]  PHYSICAL PARAMETERS OF TWO VERY COOL T DWARFS , 2006, astro-ph/0611062.

[54]  M. S. Matthews,et al.  Planetary Science. (Book Reviews: Origin and Evolution of Planetary and Satellite Atmospheres) , 1989 .

[55]  L. Hillenbrand,et al.  HD 203030B: An Unusually Cool Young Substellar Companion near the L/T Transition , 2006, astro-ph/0607514.

[56]  Brent Ellerbroek,et al.  Advances in Adaptive Optics II , 2006 .

[57]  Adam Burrows,et al.  Beyond the T Dwarfs: Theoretical Spectra, Colors, and Detectability of the Coolest Brown Dwarfs , 2003, astro-ph/0304226.

[58]  Chemistry of Low Mass Substellar Objects , 2006, astro-ph/0601381.

[59]  A. Boss Formation of Planetary-Mass Objects by Protostellar Collapse and Fragmentation , 2001 .

[60]  Young jupiters are faint: new models of the early evolution of giant planets , 2005, astro-ph/0510009.

[61]  A Theory of Extrasolar Giant Planets , 1995, astro-ph/9510046.

[62]  W. Traub,et al.  A laboratory demonstration of the capability to image an Earth-like extrasolar planet , 2007, Nature.

[63]  J. Lunine,et al.  Enrichments in Volatiles in Jupiter: A New Interpretation of the Galileo Measurements , 2001 .

[64]  Adam Burrows,et al.  The Near-Infrared and Optical Spectra of Methane Dwarfs and Brown Dwarfs , 1999, astro-ph/9908078.

[65]  A. Burrows,et al.  Chemical Equilibrium Abundances in Brown Dwarf and Extrasolar Giant Planet Atmospheres , 1999 .

[66]  D. Saumon,et al.  Non-equilibrium chemistry in the atmospheres of brown dwarfs , 2002 .

[67]  S. Seager,et al.  Clouds and chemistry: Ultracool dwarf atmospheric properties from optical and infrared colors , 2002 .

[68]  M. Marley,et al.  Detection of Abundant Carbon Monoxide in the Brown Dwarf Gliese 229B , 1997 .

[69]  A. Burrows,et al.  Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres , 2006, astro-ph/0607211.

[70]  C. McKay,et al.  The thermal structure of Titan's atmosphere. , 1989, Icarus.

[71]  B. Fegley,et al.  Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars: I. Carbon, Nitrogen, and Oxygen , 2002 .

[72]  Comparative Planetary Atmospheres: Models of TrES-1 and HD 209458b , 2005, astro-ph/0505359.

[73]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[74]  D. Lin,et al.  Toward a Deterministic Model of Planetary Formation. I. A Desert in the Mass and Semimajor Axis Distributions of Extrasolar Planets , 2004 .

[75]  T. Guillot,et al.  Effect of Radiative Transport on the Evolution of Jupiter and Saturn , 1995 .

[76]  On the origin of brown dwarfs and free-floating planetary-mass objects , 2003, astro-ph/0309645.

[77]  Laird M. Close,et al.  Constraints on Extrasolar Planet Populations from VLT NACO/SDI and MMT SDI and Direct Adaptive Optics Imaging Surveys: Giant Planets are Rare at Large Separations , 2007, 0706.4331.

[78]  M. Marley,et al.  Optimized Jupiter, Saturn, and Uranus interior models , 1989 .

[79]  A. Borysow,et al.  Collision-induced absorption coefficients of H2 pairs at temperatures from 60 K to 1000 K , 2002 .

[80]  T. Guillot,et al.  Atmospheric, Evolutionary, and Spectral Models of the Brown Dwarf Gliese 229 B , 1996, Science.

[81]  W. Hubbard The Jovian surface condition and cooling rate , 1977 .

[82]  D. Saumon,et al.  Atmosphere, Interior, and Evolution of the Metal-rich Transiting Planet HD 149026b , 2006 .

[83]  R. West,et al.  THE CORRELATED-k METHOD FOR RADIATION CALCULATIONS IN NONHOMOGENEOUS ATMOSPHERES , 1989 .

[84]  The eccentricity-mass distribution of exoplanets: signatures of different formation mechanisms? , 2006, astro-ph/0606009.

[85]  I. Baraffe,et al.  Theory of Low-Mass Stars and Substellar Objects , 2000 .

[86]  E. Salpeter,et al.  The dynamics and helium distribution in hydrogen-helium fluid planets , 1977 .

[87]  Katharina Lodders,et al.  Jupiter Formed with More Tar than Ice , 2004 .

[88]  I. Baraffe,et al.  Structure and evolution of super-Earth to super-Jupiter exoplanets - I. Heavy element enrichment in the interior , 2008, 0802.1810.

[89]  Willy Benz,et al.  Models of giant planet formation with migration and disc evolution , 2004 .

[90]  Modeling the Formation of Clouds in Brown Dwarf Atmospheres , 2003 .

[91]  B. Fegley,et al.  Chemical Models of the Deep Atmospheres of Jupiter and Saturn , 1994 .

[92]  C. McKay,et al.  Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres , 1989 .

[93]  Imke de Pater,et al.  A low-temperature origin for the planetesimals that formed Jupiter , 1999, Nature.

[94]  D. Stevenson Formation of the giant planets , 1982 .

[95]  William B. Hubbard,et al.  Cool zero-metallicity stellar atmospheres , 1994 .

[96]  Jack J. Lissauer,et al.  Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core , 2005 .