Increasing entanglement monotones by separable operations.

Quantum entanglement is fundamentally related to the operational setting of local quantum operations and classical communication (LOCC). A more general class of operations known as separable operations (SEP) is often employed to approximate LOCC, but the exact difference between LOCC and SEP is unknown. In this letter, we compare the two classes in performing particular tripartite to bipartite entanglement conversions and report a gap as large as 12.5% between SEP and LOCC, which is the first known appreciable gap between the classes. Our results rely on constructing a computable entanglement monotone with a clear operational meaning that, unlike all other such monotones previously studied, is not monotonic under SEP. Finally, we prove the curious fact that convergent sequences of LOCC protocols need not be LOCC feasible in the limit.

[1]  M. Horodecki,et al.  The Uniqueness Theorem for Entanglement Measures , 2001, quant-ph/0105017.

[2]  C. H. Bennett,et al.  Unextendible product bases and bound entanglement , 1998, quant-ph/9808030.

[3]  S. Popescu,et al.  Thermodynamics and the measure of entanglement , 1996, quant-ph/9610044.

[4]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[5]  Runyao Duan,et al.  Nonlocal entanglement transformations achievable by separable operations. , 2008, Physical review letters.

[6]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[7]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[8]  G. Vidal Entanglement of pure states for a single copy , 1999, quant-ph/9902033.

[9]  Yuan Feng,et al.  Distinguishability of Quantum States by Separable Operations , 2007, IEEE Transactions on Information Theory.

[10]  Ognyan Oreshkov,et al.  Weak measurements are universal. , 2005, Physical review letters.

[11]  J. Cirac,et al.  Entangling operations and their implementation using a small amount of entanglement. , 2000, Physical review letters.

[12]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[13]  Ferdinand Helmer,et al.  Measurement-based synthesis of multiqubit entangled states in superconducting cavity QED , 2009, 0902.0341.

[14]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[15]  Erika Andersson,et al.  Binary search trees for generalized measurements , 2007, 0712.2665.

[16]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[17]  Hoi-Kwong Lo,et al.  Randomly distilling W-class states into general configurations of two-party entanglement , 2011 .

[18]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[19]  H. Lo,et al.  Random bipartite entanglement from W and W-like states. , 2006, Physical review letters.

[20]  Christian Kurtsiefer,et al.  Experimental realization of a three-qubit entangled W state. , 2004, Physical review letters.

[21]  C. H. Bennett,et al.  Quantum nonlocality without entanglement , 1998, quant-ph/9804053.

[22]  H. Lo,et al.  Random-party entanglement distillation in multiparty states , 2008 .

[23]  G. Vidal On the characterization of entanglement , 1998 .

[24]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[25]  M. Plenio Logarithmic negativity: a full entanglement monotone that is not convex. , 2005, Physical review letters.

[26]  D. Leung,et al.  Hiding bits in bell states. , 2000, Physical Review Letters.

[27]  S. Turgut,et al.  Transformations of W-type entangled states , 2010, 1003.2118.

[28]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[29]  Eric Chitambar,et al.  Local quantum transformations requiring infinite rounds of classical communication. , 2011, Physical review letters.

[30]  M. Horodecki,et al.  Limits for entanglement measures. , 1999, Physical review letters.

[31]  Anthony Chefles Condition for unambiguous state discrimination using local operations and classical communication , 2004 .

[32]  R F Werner,et al.  Hiding classical data in multipartite quantum states. , 2002, Physical review letters.

[33]  A. Kent ENTANGLED MIXED STATES AND LOCAL PURIFICATION , 1998, quant-ph/9805088.