Procedural method for terrain surface interpolation

Abstract A procedural method for scattered data interpolation is presented. The interpolating surface represents terrain surfaces used in Digital Terrain Modeling (DTM). The construction provides visually continuous surfaces whose shape can be locally or globally controlled, can interpolate disconnected domains, and can maintain break lines or break triangles, i.e. they can be forced locally to interpolate edges and triangles. Shape control and local interpolation properties are achieved through swung surfaces as basis functions defined for each data point over a small triangulated region.

[1]  Daniele Marini,et al.  A Fractal Method for Digital Elevation Model Construction and its Application to a Mountain Region , 1993, Comput. Graph. Forum.

[2]  Gerald E. Farin,et al.  A modified Clough-Tocher interpolant , 1985, Comput. Aided Geom. Des..

[3]  Yih-ping Huang,et al.  Triangular irregular network generation and topographical modelling , 1989 .

[4]  A. K. Cline,et al.  A triangle-based $C^1$ interpolation method , 1984 .

[5]  Les A. Piegl,et al.  Algorithm and data structure for triangulating multiply connected polygonal domains , 1993, Comput. Graph..

[6]  Les A. Piegl,et al.  Delaunay triangulation using a uniform grid , 1993, IEEE Computer Graphics and Applications.

[7]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[8]  Hiroshi Akima,et al.  A Method of Bivariate Interpolation and Smooth Surface Fitting for Irregularly Distributed Data Points , 1978, TOMS.

[9]  D. H. McLain,et al.  Drawing Contours from Arbitrary Data Points , 1974, Comput. J..

[10]  Michael E. Agishtein,et al.  Smooth surface reconstruction from scattered data points , 1991, Comput. Graph..

[11]  Robert J. Renka,et al.  Algorithm 624: Triangulation and Interpolation at Arbitrarily Distributed Points in the Plane , 1984, TOMS.

[12]  Gerald Farin,et al.  Geometric modeling : algorithms and new trends , 1987 .

[13]  Thomas A. Foley,et al.  Scattered data interpolation and approximation with error bounds , 1986, Comput. Aided Geom. Des..

[14]  Robert E. Barnhill,et al.  Surfaces in Computer Aided Geometric Design , 1983 .

[15]  P. Alfeld Scattered data interpolation in three or more variables , 1989 .

[16]  C. Chui,et al.  Approximation Theory II , 1976 .

[17]  W. J. Gordon,et al.  Shepard’s method of “metric interpolation” to bivariate and multivariate interpolation , 1978 .

[18]  Gregory M. Nielson,et al.  A method for construction of surfaces under tension , 1984 .

[19]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[20]  R. Franke Smooth Interpolation of Scattered Data by Local Thin Plate Splines , 1982 .

[21]  Mirante,et al.  The Radial Sweep Algorithm for Constructing Triangulated Irregular Networks , 1982, IEEE Computer Graphics and Applications.

[22]  R. Barnhill,et al.  Polynomial interpolation to boundary data on triangles , 1975 .

[23]  Nira Dyn,et al.  Interpolation of scattered Data by radial Functions , 1987, Topics in Multivariate Approximation.

[24]  R. E. Barnhill,et al.  Three- and four-dimensional surfaces , 1984 .

[25]  G. Nielson A method for interpolating scattered data based upon a minimum norm network , 1983 .

[26]  Tom Lyche,et al.  Mathematical methods in computer aided geometric design , 1989 .

[27]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[28]  T. A. Foley,et al.  Three-stage interpolation to scattered data , 1984 .

[29]  Robert E. Barnhill,et al.  Representation and Approximation of Surfaces , 1977 .

[30]  Robert E. Barnhill,et al.  Multistage trivariate surfaces , 1984 .

[31]  R. L. Hardy Theory and applications of the multiquadric-biharmonic method : 20 years of discovery 1968-1988 , 1990 .

[32]  John L. Junkins,et al.  Modeling in n dimensions using a weighting function approach , 1974 .

[33]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[34]  Larry L. Schumaker,et al.  Topics in Multivariate Approximation , 1987 .

[35]  P. Lancaster Curve and surface fitting , 1986 .

[36]  Gregory M. Nielson,et al.  Coordinate Free scattered Data interpolation , 1987, Topics in Multivariate Approximation.

[37]  L. Schumaker Fitting surfaces to scattered data , 1976 .

[38]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[39]  R. Franke Locally Determined Smooth Interpolation at Irregularly Spaced Points in Several Variables , 1977 .

[40]  Gregory M. Nielson,et al.  Scattered Data Interpolation and Applications: A Tutorial and Survey , 1991 .

[41]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[42]  Richard Franke,et al.  Smooth interpolation of large sets of scattered data , 1980 .

[43]  D. H. McLain,et al.  Two Dimensional Interpolation from Random Data , 1976, Comput. J..

[44]  Helmut Pottmann,et al.  Scattered data interpolation based upon generalized minimum norm networks , 1991 .