Development of Novel Catalysts for Fischer–Tropsch Synthesis: Tuning the Product Selectivity

Fischer–Tropsch synthesis is a heterogeneous catalytic process for the production of clean hydrocarbon fuels or chemicals from synthesis gas (CO+H2), which can be derived from non‐petroleum feedstocks such as natural gas, coal, or biomass. Fischer–Tropsch synthesis has received renewed interests in recent years because of the global demand for a decreased dependence on petroleum for production of fuels and chemicals. The product distributions with conventional Fischer–Tropsch catalysts usually follow the Anderson–Schulz–Flory distribution and are typically unselective with regards to the formation of hydrocarbons from methane to waxes. Selectivity control is one of the key challenges of research into Fischer–Tropsch synthesis. This Review article summarizes the effects of key factors on catalytic properties, particularly the product selectivity, and highlights recent developments of novel Fischer–Tropsch catalysts and new strategies with an aim at controlling the product selectivity.

[1]  B. Weckhuysen,et al.  Combined EXAFS and STEM-EELS study of the electronic state and location of Mn as promoter in Co-based Fischer-Tropsch catalysts. , 2005, Physical chemistry chemical physics : PCCP.

[2]  Yong Yang,et al.  Study of an iron-manganese Fischer–Tropsch synthesis catalyst promoted with copper , 2006 .

[3]  J. Rostrup-Nielsen,et al.  Fuels and Energy for the Future: The Role of Catalysis , 2004 .

[4]  L. Gengembre,et al.  Optimization of the pretreatment procedure in the design of cobalt silica supported Fischer-Tropsch catalysts , 2005 .

[5]  Tharapong Vitidsant,et al.  Promotional Effects of Al2O3 Addition to Co/SiO2 Catalysts for Fischer−Tropsch Synthesis , 2006 .

[6]  Cheryl K. Rofer-DePoorter A comprehensive mechanism for the Fischer-Tropsch synthesis , 1981 .

[7]  Y. Yoneyama,et al.  Direct synthesis of isoparaffin by modified Fischer–Tropsch synthesis using hybrid catalyst of iron catalyst and zeolite , 2005 .

[8]  C. Mehnert,et al.  Synthese und Anwendungen von mit supramolekularen Templaten hergestellten mesoporösen Materialien , 1999 .

[9]  Yuhan Sun,et al.  Hollow mesoporous silica sphere supported cobalt catalysts for F–T synthesis , 2009 .

[10]  J. Goodwin,et al.  Characterization of La3+-Promoted Co/SiO2Catalysts , 1996 .

[11]  Xianming Li,et al.  New method for the preparation of nonuniform distributed Co/SiO2 catalysts. , 2008, Chemical communications.

[12]  J. Walmsley,et al.  Characterization of alumina-, silica-, and titania-supported cobalt Fischer–Tropsch catalysts , 2005 .

[13]  Yuhan Sun,et al.  Mesoporous HMS molecular sieves supported cobalt catalysts for Fischer-Tropsch synthesis , 2001 .

[14]  Yi Zhang,et al.  Pore diffusion simulation model of bimodal catalyst for Fischer-Tropsch synthesis , 2005 .

[15]  R. Pugmire,et al.  Enhancement in the reducibility of cobalt oxides on a mesoporous silica supported cobalt catalyst. , 2005, Chemical Communications.

[16]  J. F. Creemer,et al.  Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy , 2008, Nature.

[17]  J. Goodwin,et al.  CO Hydrogenation on Ru-Promoted Co/MCM-41 Catalysts , 2002 .

[18]  T. Riedel,et al.  Fischer–Tropsch on Iron with H2/CO and H2/CO2 as Synthesis Gases: The Episodes of Formation of the Fischer–Tropsch Regime and Construction of the Catalyst , 2003 .

[19]  C. López,et al.  HMS mesoporous silica as cobalt support for the Fischer-Tropsch Synthesis : Pretreatment, cobalt loading and particle size effects , 2008 .

[20]  K. Fujimoto,et al.  Fischer–Tropsch synthesis using Co/SiO2 catalysts prepared from mixed precursors and addition effect of noble metals , 2002 .

[21]  M. Dry,et al.  Stability of nanocrystals: thermodynamic analysis of oxidation and re-reduction of cobalt in water/hydrogen mixtures. , 2005, The journal of physical chemistry. B.

[22]  S. Bessell Support effects in cobalt-based fischer-tropsch catalysis , 1993 .

[23]  T. Vaara,et al.  Preparation and characterization of Co/SiO2, Co-Mg/SiO2 and Mg-Co/SiO2 catalysts and their activity in CO hydrogenation , 1995 .

[24]  K. P. Jong,et al.  Preparation of Fischer–Tropsch cobalt catalysts supported on carbon nanofibers and silica using homogeneous deposition-precipitation , 2006 .

[25]  Jun Bao,et al.  A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction. , 2008, Angewandte Chemie.

[26]  Anders Holmen,et al.  Fischer–Tropsch synthesis: Cobalt particle size and support effects on intrinsic activity and product distribution , 2008 .

[27]  Yi Zhang,et al.  A new and direct preparation method of iron-based bimodal catalyst and its application in Fischer–Tropsch synthesis , 2009 .

[28]  Agustín Martínez,et al.  The Application of Zeolites and Periodic Mesoporous Silicas in the Catalytic Conversion of Synthesis Gas , 2009 .

[29]  K. P. Jong,et al.  Investigation of promoter effects of manganese oxide on carbon nanofiber-supported cobalt catalysts for Fischer–Tropsch synthesis , 2006 .

[30]  Tharapong Vitidsant,et al.  Design and Modification of Zeolite Capsule Catalyst, A Confined Reaction Field, and its Application in One-Step Isoparaffin Synthesis from Syngas , 2008 .

[31]  Yongqing Zhang,et al.  Fischer−Tropsch synthesis: activity and selectivity for Group I alkali promoted iron-based catalysts , 2002 .

[32]  W. Schmidt Solid Catalysts on the Nanoscale: Design of Complex Morphologies and Pore Structures , 2009 .

[33]  S. Dai,et al.  Mesoporöse Kohlenstoffmaterialien: Synthese und Modifizierung , 2008 .

[34]  Jinlin Li,et al.  Fischer–Tropsch synthesis: The role of pore size for Co/SBA-15 catalysts , 2008 .

[35]  John Meurig Thomas,et al.  Heterogene Single‐Site‐Katalysatoren , 2005 .

[36]  G. Øye,et al.  Synthesis and characterization of mesoporous alumina with large pore size and their performance in Fischer–Tropsch synthesis , 2008 .

[37]  T. Bein,et al.  Inclusion Chemistry in Periodic Mesoporous Hosts , 1998 .

[38]  G. Jacobs,et al.  FISCHER-TROPSCH SYNTHESIS: CHARACTERIZATION AND CATALYTIC PROPERTIES OF RHENIUM PROMOTED COBALT ALUMINA CATALYSTS , 2003 .

[39]  Enrique Iglesia,et al.  Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts , 1997 .

[40]  Agustín Martínez,et al.  Catalytic behavior of hybrid Co/SiO2-(medium-pore) zeolite catalysts during the one-stage conversion of syngas to gasoline , 2008 .

[41]  Akira Taguchi,et al.  Ordered mesoporous materials in catalysis , 2005 .

[42]  Burtron H. Davis,et al.  Fischer–Tropsch synthesis: current mechanism and futuristic needs , 2001 .

[43]  Andreas Stein,et al.  Functionalization of Porous Carbon Materials with Designed Pore Architecture , 2009 .

[44]  R. J. Gormley,et al.  Bifunctional catalysis in syngas conversions , 1990 .

[45]  E. Lotero,et al.  Fe-based Fischer-Tropsch synthesis catalysts containing carbide-forming transition metal promoters , 2008 .

[46]  Agustín Martínez,et al.  Breaking the dispersion-reducibility dependence in oxide-supported cobalt nanoparticles , 2007 .

[47]  P. Walker,et al.  CO hydrogenation over well-dispersed carbon-supported iron catalysts , 1982 .

[48]  M. Boudart,et al.  Structure sensitivity of hydrocarbon synthesis from carbon monoxide and hydrogen , 1984 .

[49]  W. Delgass,et al.  The characterization of carbon-supported iron catalysts: Chemisorption, magnetization, and Mössbauer spectroscopy , 1982 .

[50]  Krijn P. de Jong,et al.  Design of supported cobalt catalysts with maximum activity for the Fischer-Tropsch synthesis , 2010 .

[51]  M. Kang,et al.  SBA-15-Supported Iron Catalysts for Fischer-Tropsch Production of Diesel Fuel , 2006 .

[52]  Freek Kapteijn,et al.  Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts. , 2006, Journal of the American Chemical Society.

[53]  Jinlin Li,et al.  Studies on MCM-48 supported cobalt catalyst for Fischer–Tropsch synthesis , 2006 .

[54]  S. Bessell Investigation of bifunctional zeolite supported cobalt Fischer-Tropsch catalysts , 1995 .

[55]  J. W. Mitchell,et al.  Slurry-phase Fischer-Tropsch synthesis and kinetic studies over supported cobalt carbonyl derived catalysts , 1990 .

[56]  A. Dalai,et al.  Fischer–Tropsch synthesis over carbon nanotubes supported cobalt catalysts in a fixed bed reactor: Influence of acid treatment , 2009 .

[57]  Rajesh A. Khatri,et al.  Carbon Nanotube Docking Stations: A New Concept in Catalysis , 2009 .

[58]  Pascal Fongarland,et al.  In situ XRD investigation of the evolution of alumina-supported cobalt catalysts under realistic conditions of Fischer-Tropsch synthesis. , 2010, Chemical communications.

[59]  A. Bell The Impact of Nanoscience on Heterogeneous Catalysis , 2003, Science.

[60]  Rajamani Krishna,et al.  Fundamentals and selection of advanced Fischer-Tropsch reactors , 1999 .

[61]  M. Montes,et al.  Use of different mesostructured materials based on silica as cobalt supports for the Fischer–Tropsch synthesis , 2009 .

[62]  E. Steen,et al.  Fischer‐Tropsch Catalysts for the Biomass‐to‐Liquid (BTL)‐Process , 2008 .

[63]  Wei Chen,et al.  Facile autoreduction of iron oxide/carbon nanotube encapsulates. , 2006, Journal of the American Chemical Society.

[64]  J. Goodwin,et al.  Synthesis and characteristics of MCM-41 supported CoRu catalysts , 2002 .

[65]  P. Serp,et al.  Carbon nanotubes and nanofibers in catalysis , 2003 .

[66]  Yi Zhang,et al.  Simultaneous introduction of chemical and spatial effects via a new bimodal catalyst support preparation method. , 2002, Chemical communications.

[67]  S. Kaliaguine,et al.  Perspectives in catalytic applications of mesostructured materials , 2001 .

[68]  A. Bell,et al.  Effects of Dispersion and Metal-Metal Oxide Interactions on Fischer-Tropsch Synthesis over Ru/TiO2 and TiO2-Promoted Ru/SiO2 , 1994 .

[69]  A. Holmen,et al.  Study of the effect of water on Fischer–Tropsch synthesis over supported cobalt catalysts , 2005 .

[70]  Ye Wang,et al.  Novel utilization of mesoporous molecular sieves as supports of cobalt catalysts in Fischer-Tropsch synthesis , 2004 .

[71]  P. Maitlis,et al.  The role of electrophilic species in the Fischer-Tropsch reaction. , 2009, Chemical communications.

[72]  Xiulian Pan,et al.  Direct production of light olefins from syngas over a carbon nanotube confined iron catalyst , 2010 .

[73]  Jie Chang,et al.  Selective synthesis of middle isoparaffins via a two-stage Fischer-Tropsch reaction: Activity investigation for a hybrid catalyst , 2005 .

[74]  M. Vannice The catalytic synthesis of hydrocarbons from H2CO mixtures over the group VIII metals: I. The specific activities and product distributions of supported metals , 1975 .

[75]  J. Niemantsverdriet,et al.  On the time-dependent behavior of iron catalysts in Fischer-Tropsch synthesis , 1981 .

[76]  J. G. Goodwin,et al.  Isotopic Transient Study of La Promotion of Co/Al2O3or CO Hydrogenation , 1995 .

[77]  Ajay K. Dalai,et al.  Iron catalysts supported on carbon nanotubes for Fischer–Tropsch synthesis: Effect of catalytic site position , 2009 .

[78]  Yong Yang,et al.  Coal to Liquid (CTL): Commercialization Prospects in China , 2007 .

[79]  Rutger A. van Santen Complementary structure sensitive and insensitive catalytic relationships. , 2009 .

[80]  P. Serp,et al.  Catalysis in Carbon Nanotubes , 2010 .

[81]  E. Steen,et al.  Comparison of preparation methods for carbon nanotubes supported iron Fischer–Tropsch catalysts , 2002 .

[82]  Jinlin Li,et al.  Catalytic performance of zirconium-modified Co/Al2O3 for Fischer–Tropsch synthesis , 2005 .

[83]  Wei Chu,et al.  Cobalt species in promoted cobalt alumina-supported Fischer–Tropsch catalysts , 2007 .

[84]  G. V. D. Laan,et al.  Kinetics and Selectivity of the Fischer–Tropsch Synthesis: A Literature Review , 1999 .

[85]  A. Feller,et al.  Cobalt Cluster Effects in Zirconium Promoted Co/SiO2 Fischer–Tropsch Catalysts , 1999 .

[86]  Im Ionel Ciobica,et al.  Mechanisms for Chain Growth in Fischer–Tropsch Synthesis over Ru(0001) , 2002 .

[87]  D. Glasser,et al.  Fischer–Tropsch synthesis over iron catalysts supported on carbon nanotubes , 2005 .

[88]  K. Jun,et al.  Effect of support and cobalt precursors on the activity of Co/AlPO4 catalysts in Fischer–Tropsch synthesis , 2009 .

[89]  Qinghong Zhang,et al.  Preparation of metallic cobalt inside NaY zeolite with high catalytic activity in Fischer–Tropsch synthesis , 2003 .

[90]  S. T. Sie,et al.  The shell middle distillate synthesis process (SMDS) , 1988 .

[91]  Qinghong Zhang,et al.  Ruthenium nanoparticles supported on carbon nanotubes as efficient catalysts for selective conversion of synthesis gas to diesel fuel. , 2009, Angewandte Chemie.

[92]  J. Goodwin,et al.  Effect of zirconia-modified alumina on the properties of Co/γ-Al2O3 catalysts , 2003 .

[93]  Éva D. Molnár,et al.  CO hydrogenation over cobalt and iron catalysts supported over multiwall carbon nanotubes: Effect of preparation , 2006 .

[94]  A. Kiennemann,et al.  Effects of highly dispersed ceria addition on reducibility, activity and hydrocarbon chain growth of a Co/SiO2 Fischer–Tropsch catalyst , 1999 .

[95]  Taeghwan Hyeon,et al.  Recent Progress in the Synthesis of Porous Carbon Materials , 2006 .

[96]  M. Vannice,et al.  Effect of support pretreatments on carbon-supported iron particles , 1987 .

[97]  Jingjiang He,et al.  Multiple-functional capsule catalysts: a tailor-made confined reaction environment for the direct synthesis of middle isoparaffins from syngas. , 2006, Chemistry.

[98]  The preparation of supported NiO and Co3O4 nanoparticles by the nitric oxide controlled thermal decomposition of nitrates. , 2007, Angewandte Chemie.

[99]  Alexis T. Bell,et al.  Effects of dispersion on the activity and selectivity of alumina-supported ruthenium catalysts for carbon monoxide hydrogenation , 1982 .

[100]  W. Chu,et al.  Effect of promotion with ruthenium on the structure and catalytic performance of mesoporous silica (smaller and larger pore) supported cobalt Fischer–Tropsch catalysts , 2009 .

[101]  R. Revel,et al.  Differences in the characteristics and catalytic properties of cobalt-based Fischer–Tropsch catalysts supported on zirconia and alumina , 2004 .

[102]  Catalytic CO hydrogenation on potassic Fe/zeolite LTL , 2002 .

[103]  Avelino Corma,et al.  From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. , 1997, Chemical reviews.

[104]  Robert C. Brady,et al.  Mechanism of the Fischer-Tropsch reaction. The chain propagation step , 1981 .

[105]  Xinhe Bao,et al.  Reactions over catalysts confined in carbon nanotubes. , 2008, Chemical communications.

[106]  Mohammad Reza Rahimpour,et al.  Enhancement of gasoline production in a novel hydrogen- permselective membrane reactor in Fischer-Tropsch synthesis of GTL technology , 2009 .

[107]  A. Jansen,et al.  Direct versus hydrogen-assisted CO dissociation. , 2009, Journal of the American Chemical Society.

[108]  A. Khodakov,et al.  Pore Size Effects in Fischer Tropsch Synthesis over Cobalt-Supported Mesoporous Silicas , 2002 .

[109]  P. J. van Berge,et al.  Oxidation of cobalt based Fischer–Tropsch catalysts as a deactivation mechanism , 2000 .

[110]  Ajay K. Dalai,et al.  Fischer–Tropsch synthesis over cobalt catalyst supported on carbon nanotubes in a slurry reactor , 2008 .

[111]  Jingjiang He,et al.  Designing a capsule catalyst and its application for direct synthesis of middle isoparaffins. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[112]  R. B. Anderson,et al.  Composition of Synthetic Liquid Fuels. I. Product Distribution and Analysis of C5—C8 Paraffin Isomers from Cobalt Catalyst1 , 1950 .

[113]  Ahmad Tavasoli,et al.  Cobalt supported on carbon nanotubes — A promising novel Fischer–Tropsch synthesis catalyst , 2008 .

[114]  L. Guczi,et al.  Zeolite supported mono- and bimetallic systems: structure and performance as CO hydrogenation catalysts , 1999 .

[115]  P. Kooyman,et al.  Insights into the nature of iron-based Fischer–Tropsch catalysts from quasi in situ TEM-EELS and XRD , 2009 .

[116]  E. Lotero,et al.  An activity and XANES study of Mn-promoted, Fe-based Fischer–Tropsch catalysts , 2010 .

[117]  Agustín Martínez,et al.  A detailed study of the activity and deactivation of zeolites in hybrid Co/SiO2-zeolite Fischer–Tropsch catalysts , 2007 .

[118]  K. Sakanishi,et al.  Synthesis of Zr-grafted SBA-15 as an Effective Support for Cobalt Catalyst in Fischer-Tropsch Synthesis , 2008 .

[119]  Yong Jin,et al.  Slurry Reactors for Gas-to-Liquid Processes: A Review , 2007 .

[120]  Xingang Li One-step Synthesis of H-beta Zeolite Enwrapped Co/Al2O3 Fischer-Tropsch Catalyst with High Spatial Selectivity , 2009 .

[121]  New catalytic phenomena on nanostructured (fibers and tubes) catalysts , 2003 .

[122]  W. Chu,et al.  The nature of cobalt species in carbon nanotubes and their catalytic performance in Fischer–Tropsch reaction , 2009 .

[123]  B. Weckhuysen,et al.  Mn promotion effects in Co/TiO2 Fischer-Tropsch catalysts as investigated by XPS and STEM-EELS , 2005 .

[124]  K. Jun,et al.  Slurry-Phase Fischer–Tropsch Synthesis Using Co/γ-Al2O3, Co/SiO2 and Co/TiO2: Effect of Support on Catalyst Aggregation , 2009 .

[125]  N. G. Gallegos,et al.  Selectivity to Olefins of Fe/SiO2–MgO Catalysts in the Fischer–Tropsch Reaction , 1996 .

[126]  Jinlin Li,et al.  Preparation and Catalytic Activity for Fischer−Tropsch Synthesis of Ru Nanoparticles Confined in the Channels of Mesoporous SBA-15 , 2008 .

[127]  De Chen,et al.  Carbon Nanofiber Supported Cobalt Catalysts for Fischer–Tropsch Synthesis with High Activity and Selectivity , 2006 .

[128]  M. Dry,et al.  The Fischer–Tropsch process: 1950–2000 , 2002 .

[129]  B. Weckhuysen,et al.  Selective adsorption of manganese onto cobalt for optimized Mn/Co/TiO2 Fischer-Tropsch catalysts , 2010 .

[130]  M. Rohde,et al.  Membrane application in Fischer–Tropsch synthesis reactors—Overview of concepts , 2005 .

[131]  F. G. Botes,et al.  The addition of HZSM-5 to the Fischer–Tropsch process for improved gasoline production , 2004 .

[132]  K. P. Jong,et al.  Cobalt supported on carbon nanofibers- a promising novel Fischer-Tropsch catalyst , 2004 .

[133]  Ye Wang,et al.  Synthesis of SBA-15 with different pore sizes and the utilization as supports of high loading of cobalt catalysts , 2001 .

[134]  Michiyoshi Tanaka,et al.  Size effect on the crystal phase of cobalt fine particles , 1997 .

[135]  Y. Zamani,et al.  Intrinsic kinetics of Fischer–Tropsch reactions over an industrial Co–Ru/γ-Al2O3 catalyst in slurry phase reactor , 2009 .

[136]  K. Fujimoto,et al.  The reaction performances and characterization of Fischer–Tropsch synthesis Co/SiO2 catalysts prepared from mixed cobalt salts , 2000 .

[137]  B. Weckhuysen,et al.  The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. , 2008, Chemical Society reviews.

[138]  C. Mims,et al.  Support and rhenium effects on the intrinsic site activity and methane selectivity of cobalt Fischer–Tropsch catalysts , 2004 .

[139]  J. Bitter,et al.  On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis. , 2009, Journal of the American Chemical Society.

[140]  Qinghong Zhang,et al.  Characterizations of cobalt oxide nanoparticles within faujasite zeolites and the formation of metallic cobalt , 2004 .

[141]  P. Concepción,et al.  Cobalt particle size effects in Fischer–Tropsch synthesis: structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts , 2009 .

[142]  Ulrich Kunz,et al.  Reactors for Fischer‐Tropsch Synthesis , 2008 .

[143]  Hans Schulz,et al.  Short history and present trends of Fischer–Tropsch synthesis , 1999 .

[144]  Alexis T. Bell,et al.  Catalytic Synthesis of Hydrocarbons over Group VIII Metals. A Discussion of the Reaction Mechanism , 1981 .

[145]  James G. Goodwin,et al.  Effect of K promotion of Fe and FeMn Fischer–Tropsch synthesis catalysts: Analysis at the site level using SSITKA , 2008 .

[146]  C. Liang,et al.  Mesoporous carbon materials: synthesis and modification. , 2008, Angewandte Chemie.

[147]  Zhipan Liu,et al.  A new insight into Fischer-Tropsch synthesis. , 2002, Journal of the American Chemical Society.

[148]  Burtron H. Davis,et al.  Fischer−Tropsch Synthesis: Comparison of Performances of Iron and Cobalt Catalysts , 2007 .

[149]  Isabel Díaz,et al.  Fischer–Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor, and promoters , 2003 .

[150]  Yi Zhang,et al.  Development of Bimodal Cobalt Catalysts for Fischer-Tropsch Synthesis , 2004 .

[151]  Cyril Knottenbelt,et al.  Mossgas “gas-to-liquid” diesel fuels—an environmentally friendly option , 2002 .

[152]  Y. Teraoka,et al.  Synthesis and characterization of zirconium containing mesoporous silicates and the utilization as support of cobalt catalysts for Fischer–Tropsch synthesis , 2004 .

[153]  R. Brady,et al.  Reactions of diazomethane on transition-metal surfaces and their relationship to the mechanism of the Fischer-Tropsch reaction , 1980 .

[154]  T. Arai,et al.  Fischer−Tropsch Synthesis with Cobalt Catalysts Supported on Mesoporous Silica for Efficient Production of Diesel Fuel Fraction , 2003 .

[155]  Abhaya K. Datye,et al.  Attrition Resistance of Supports for Iron Fischer-Tropsch Catalysts , 2003 .

[156]  Qinghong Zhang,et al.  Cobalt nanoparticles prepared in faujasite zeolites by borohydride reduction , 2005 .

[157]  Xiaoyu Sun,et al.  Reversible promotional effect of SiO2 modification to Co/Al2O3 catalyst for Fischer–Tropsch synthesis , 2010 .

[158]  D. Goodman,et al.  Fischer-Tropsch synthesis on a model Co/SiO2 catalyst , 2009 .

[159]  Wei Chen,et al.  Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst. , 2008, Journal of the American Chemical Society.

[160]  Xue-qing Gong,et al.  A quantitative determination of reaction mechanisms from density functional theory calculations: Fischer–Tropsch synthesis on flat and stepped cobalt surfaces , 2008 .

[161]  Mingdeng Wei,et al.  Fischer-Tropsch synthesis over cobalt catalysts supported on mesoporous metallo-silicates : High-quality transportation fuels , 2003 .

[162]  K. D. de Jong,et al.  Carbon Nanofibers: Catalytic Synthesis and Applications , 2000 .

[163]  Oliver R. Inderwildi,et al.  Fischer−Tropsch Mechanism Revisited: Alternative Pathways for the Production of Higher Hydrocarbons from Synthesis Gas , 2008 .

[164]  P. Concepción,et al.  Characterization and catalytic properties of cobalt supported on delaminated ITQ-6 and ITQ-2 zeolites for the Fischer–Tropsch synthesis reaction , 2004 .

[165]  C. H. Bartholomew,et al.  Effects of crystallite size and support on the carbon monoxide hydrogenation activity/selectivity properties of iron/carbon , 1986 .

[166]  A. Holmen,et al.  Fischer–Tropsch synthesis over γ-alumina-supported cobalt catalysts: Effect of support variables , 2007 .

[167]  Yuhan Sun,et al.  Effect of pore size on the performance of mesoporous zirconia-supported cobalt Fischer–Tropsch catalysts , 2007 .

[168]  Jianli Hu,et al.  Fischer-Tropsch Synthesis on Ceramic Monolith-Structured Catalysts , 2009 .

[169]  E. Iglesia,et al.  Control of Metal Dispersion and Structure by Changes in the Solid-State Chemistry of Supported Cobalt Fischer–Tropsch Catalysts , 2003 .

[170]  Yong Yang,et al.  Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer–Tropsch synthesis , 2004 .

[171]  Thomas Turek,et al.  Comparison of different reactor types for low temperature Fischer–Tropsch synthesis: A simulation study , 2009 .

[172]  Hong Wang,et al.  Effect of magnesium promoter on iron-based catalyst for Fischer–Tropsch synthesis , 2006 .

[173]  Yi Zhang,et al.  Multi-functional alumina–silica bimodal pore catalyst and its application for Fischer-Tropsch synthesis , 2005 .

[174]  Qinghong Zhang,et al.  Lithium ion-exchanged zeolite faujasite as support of iron catalyst for Fischer-Tropsch synthesis , 2007 .

[175]  A. Borgna,et al.  Novel utilization of MCM-22 molecular sieves as supports of cobalt catalysts in the Fischer–Tropsch synthesis , 2005 .

[176]  Jinlin Li,et al.  Catalytic properties of the Ru promoted Co/SBA-15 catalysts for Fischer–Tropsch synthesis , 2008 .

[177]  K. D. de Jong,et al.  Cobalt on carbon nanofiber catalysts: auspicious system for study of manganese promotion in Fischer-Tropsch catalysis. , 2005, Chemical communications.

[178]  E. Steen,et al.  Silica supported cobalt Fischer-Tropsch catalysts: effect of pore diameter of support , 2002 .

[179]  A. Beale,et al.  Local and long range order in promoted iron-based Fischer–Tropsch catalysts: A combined in situ X-ray absorption spectroscopy/wide angle X-ray scattering study , 2009 .

[180]  A. Datye,et al.  Fe-Ru small particle bimetallic catalysts supported on carbon nanotubes for use in Fischer-Tropsch synthesis , 2007 .

[181]  K. Fujimoto,et al.  Different functions of the noble metals added to cobalt catalysts for Fischer-Tropsch synthesis , 2001 .

[182]  M. Dry,et al.  Practical and theoretical aspects of the catalytic Fischer-Tropsch process , 1996 .

[183]  Jinlin Li,et al.  Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer–Tropsch catalysts , 2006 .

[184]  Jackie Y. Ying,et al.  SYNTHESIS AND APPLICATIONS OF SUPRAMOLECULAR-TEMPLATED MESOPOROUS MATERIALS , 1999 .

[185]  A. Khodakov,et al.  Pore-Size Control of Cobalt Dispersion and Reducibility in Mesoporous Silicas , 2001 .

[186]  J. G. Goodwin,et al.  Zr Promotion of Co/SiO2 for Fischer-Tropsch Synthesis , 1995 .

[187]  A. Kiennemann,et al.  Promotion of Co/SiO2 Fischer–Tropsch catalysts with zirconium , 2003 .

[188]  Xuelian Liang,et al.  Multi-Walled Carbon Nanotubes as a Novel Promoter of Catalysts for CO/CO2 Hydrogenation to Alcohols , 2009 .

[189]  F. G. Botes,et al.  The effect of a higher operating temperature on the Fischer–Tropsch/HZSM-5 bifunctional process , 2005 .

[190]  A. Proctor,et al.  Influence of lanthanum on the surface structure and CO hydrogenation activity of supported cobalt catalysts , 1989 .

[191]  Guohui Yang,et al.  Preparation, characterization and reaction performance of H-ZSM-5/cobalt/silica capsule catalysts with different sizes for direct synthesis of isoparaffins , 2007 .

[192]  James G. Goodwin,et al.  Effect of La3+Promotion of Co/SiO2on CO Hydrogenation , 1996 .

[193]  Qinghong Zhang,et al.  Utilization of microporous and mesoporous materials as supports of cobalt catalysts for regulating product distributions in Fischer-Tropsch synthesis , 2006 .

[194]  X. Bao,et al.  Textural manipulation of mesoporous materials for hosting of metallic nanocatalysts. , 2008, Chemistry.

[195]  Robert Raja,et al.  Single-site heterogeneous catalysts. , 2005, Angewandte Chemie.

[196]  B. Weckhuysen,et al.  In Situ X-ray Absorption of Co/Mn/TiO2 Catalysts for Fischer−Tropsch Synthesis , 2004 .

[197]  A. Khodakov,et al.  Fischer–Tropsch synthesis over silica supported cobalt catalysts: mesoporous structure versus cobalt surface density , 2003 .

[198]  C. H. Bartholomew,et al.  Cobalt-support interactions: their effects on adsorption and carbon monoxide hydrogenation activity and selectivity properties , 1985 .

[199]  P. Tanev,et al.  A Neutral Templating Route to Mesoporous Molecular Sieves , 1995, Science.

[200]  Xianming Li,et al.  Effect of La2O3 doping on syntheses of C1–C18 mixed linear α-alcohols from syngas over the Co/AC catalysts , 2009 .

[201]  Enrique Iglesia,et al.  Promoted iron-based catalysts for the Fischer-Tropsch synthesis: Design, synthesis, site densities, and catalytic properties , 2002 .

[202]  R. Revel,et al.  In Situ XRD Study of the Influence of Thermal Treatment on the Characteristics and the Catalytic Properties of Cobalt-Based Fischer–Tropsch Catalysts , 2002 .

[203]  Yongqing Zhang,et al.  Fischer–Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts , 2002 .

[204]  Bert M. Weckhuysen,et al.  Effects of manganese oxide promoter on the CO and H2 adsorption properties of titania-supported cobalt Fischer–Tropsch catalysts , 2007 .

[205]  Jianli Hu,et al.  Intensified Fischer–Tropsch synthesis process with microchannel catalytic reactors , 2009 .

[206]  Agustín Martínez,et al.  The influence of ZSM-5 zeolite composition and crystal size on the in situ conversion of Fischer–Tropsch products over hybrid catalysts , 2005 .

[207]  K. Fujimoto,et al.  Three-component hybrid catalyst for direct synthesis of isoparaffin via modified Fischer–Tropsch synthesis , 2003 .

[208]  Burtron H. Davis,et al.  Fischer–Tropsch synthesis: Overview of reactor development and future potentialities , 2005 .

[209]  Wei Chu,et al.  Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. , 2007, Chemical reviews.

[210]  Yi Zhang,et al.  A New Preparation Method of Bimodal Catalyst Support and Its Application in Fischer–Tropsch Synthesis , 2003 .

[211]  J. Niemantsverdriet,et al.  In situ surface oxidation study of a planar Co/SiO2/Si(100) model catalyst with nanosized cobalt crystallites under model Fischer-Tropsch synthesis conditions. , 2006, The journal of physical chemistry. B.

[212]  James G. Goodwin,et al.  Impact of Cr, Mn and Zr addition on Fe Fischer–Tropsch synthesis catalysis: Investigation at the active site level using SSITKA , 2008 .

[213]  Wei Chen,et al.  Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes. , 2007, Journal of the American Chemical Society.

[214]  B. Davis,et al.  Fischer-Tropsch synthesis: Group II alkali-earth metal promoted catalysts , 2003 .

[215]  M. Vannice,et al.  The catalytic synthesis of hydrocarbons from H2CO mixtures over the group VIII metals: II. The kinetics of the methanation reaction over supported metals , 1975 .

[216]  K. Jun,et al.  Enhanced Fischer–Tropsch activity on Co/P–Al2O3 catalyst: Effect of phosphorous content , 2009 .

[217]  A. G. Piken,et al.  Heterogeneous methanation: initial rate of CO hydrogenation on supported ruthenium and nickel , 1974 .

[218]  Y. Mortazavi,et al.  Fischer–Tropsch synthesis over cobalt dispersed on carbon nanotubes-based supports and activated carbon , 2009 .