Control of the doping concentration, morphology and optoelectronic properties of vertically aligned chlorine-doped ZnO nanowires

[1]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[2]  Robert Mertens,et al.  Band‐gap narrowing in highly doped n‐ and p‐type GaAs studied by photoluminescence spectroscopy , 1989 .

[3]  T. Kushida,et al.  Resonance Raman Scattering in CdS and ZnO by Tunable Dye Laser , 1972 .

[4]  W. L. Jolly,et al.  X-RAY PHOTOELECTRON SPECTROSCOPY , 1970 .

[5]  Dewei Chu,et al.  Facile Synthesis, Characterization of ZnO Nanotubes and Nanoflowers in an Aqueous Solution , 2010 .

[6]  J. Huso,et al.  Raman scattering of polar modes of ZnO crystallites , 2005 .

[7]  Zhong Lin Wang,et al.  Microfibre–nanowire hybrid structure for energy scavenging , 2008, Nature.

[8]  Bingqiang Cao,et al.  Resistivity control of ZnO nanowires by Al doping , 2010 .

[9]  L. Ono,et al.  Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium , 2010 .

[10]  A. Ballman,et al.  HYDROTHERMAL SYNTHESIS OF ZINC OXIDE AND ZINC SULFIDE1 , 1960 .

[11]  Margaret A. K. Ryan,et al.  CdSe‐Sensitized p‐CuSCN/Nanowire n‐ZnO Heterojunctions , 2005 .

[12]  Benjamin J. Norris,et al.  ZnO-based transparent thin-film transistors , 2003 .

[13]  Dongsheng Xu,et al.  Morphological control of ZnO nanostructures by electrodeposition. , 2005, The journal of physical chemistry. B.

[14]  H. B. Lu,et al.  A novel gas sensor based on field ionization from ZnO nanowires: moderate working voltage and high stability , 2008, Nanotechnology.

[15]  Yong Ding,et al.  Semiconducting and Piezoelectric Oxide Nanostructures Induced by Polar Surfaces , 2004 .

[16]  M. Izaki,et al.  Electrolyte Optimization for Cathodic Growth of Zinc Oxide Films , 1996 .

[17]  B. Tell,et al.  Raman Effect in Zinc Oxide , 1966 .

[18]  Jingbiao Cui,et al.  Electrochemical Route to p-Type Doping of ZnO Nanowires , 2010 .

[19]  T. Chen,et al.  A facile shape-selective growth of ZnO nanotips and graded nanowires from its oriented nanorods in a saturated ZnS solution , 2010, Nanotechnology.

[20]  R. L. Verma Potential and limitations of caesium iodide as a dynode material for use in electron multipliers , 1978 .

[21]  F. Fabregat‐Santiago,et al.  Determination of carrier density of ZnO nanowires by electrochemical techniques , 2006 .

[22]  P. Galtier,et al.  Electrical properties of chlorine‐doped ZnO thin films grown by MOCVD , 2008 .

[23]  Fang Qian,et al.  Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. , 2009, Nano letters.

[24]  W. Shen,et al.  Photoluminescence and resonant Raman scattering in N-doped ZnO thin films , 2010 .

[25]  P. Galtier,et al.  Effect of chlorine doping on electrical and optical properties of ZnO thin films , 2008 .

[26]  E. Fortunato,et al.  Fully Transparent ZnO Thin‐Film Transistor Produced at Room Temperature , 2005 .

[27]  Electrochemical growth and characterization of Ag-doped ZnO nanostructures , 2009 .

[28]  U. Gibson,et al.  Low-Temperature Growth and Characterization of Cl-Doped ZnO Nanowire Arrays , 2008 .

[29]  Peidong Yang,et al.  Solution-grown zinc oxide nanowires. , 2006, Inorganic chemistry.

[30]  Subhasis Ghosh Photoluminescence spectroscopy of band-gap narrowing in n-type Al x Ga 1-x As , 2000 .

[31]  Tae Jae Lee,et al.  Field emission from well-aligned zinc oxide nanowires grown at low temperature , 2002 .

[32]  E. Burstein Anomalous Optical Absorption Limit in InSb , 1954 .

[33]  Lianmao Peng,et al.  Quantitative Analysis of Current–Voltage Characteristics of Semiconducting Nanowires: Decoupling of Contact Effects , 2007 .

[34]  Peidong Yang,et al.  General route to vertical ZnO nanowire arrays using textured ZnO seeds. , 2005, Nano letters.

[35]  Zhong Lin Wang,et al.  Catalyst-free MOCVD growth of aligned ZnO nanotip arrays on silicon substrate with controlled tip shape , 2007 .

[36]  Claude Lévy-Clément,et al.  Effect of the Chemical Nature of the Anions on the Electrodeposition of ZnO Nanowire Arrays , 2008 .

[37]  Bin Xiang,et al.  Efficient field emission from ZnO nanoneedle arrays , 2003 .

[38]  P. O’Brien,et al.  Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution , 2004 .

[39]  Yujia Zeng,et al.  Carrier concentration dependence of band gap shift in n-type ZnO:Al films , 2007 .

[40]  X. W. Sun,et al.  Zinc oxide nanocomb biosensor for glucose detection , 2006 .

[41]  Wagner Band-gap narrowing in heavily doped silicon at 20 and 300 K studied by photoluminescence. , 1985, Physical review. B, Condensed matter.

[42]  Henryk Temkin,et al.  Size-dependent surface luminescence in ZnO nanowires , 2004 .

[43]  F. Cardon,et al.  On the determination of the flat-band potential of a semiconductor in contact with a metal or an electrolyte from the Mott-Schottky plot , 1978 .

[44]  Y. Liu,et al.  F-doping effects on electrical and optical properties of ZnO nanocrystalline films , 2005 .

[45]  D. Lincot,et al.  Extrinsic Doping of Electrodeposited Zinc Oxide Films by Chlorine for Transparent Conductive Oxide Applications , 2009 .

[46]  R. M. Mehra,et al.  Band gap widening and narrowing in moderately and heavily doped n-ZnO films , 2006 .

[47]  M. Yin,et al.  Morphological control and photoluminescence of zinc oxide nanocrystals. , 2005, The journal of physical chemistry. B.

[48]  P. Galtier,et al.  Perspectives of chlorine doping of ZnO , 2007 .

[49]  Won-Jae Lee,et al.  Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films , 2010 .

[50]  Zhong Lin Wang Zinc oxide nanostructures: growth, properties and applications , 2004 .

[51]  X. W. Sun,et al.  Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition , 2006 .

[52]  Alberto Piqué,et al.  Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices , 2000 .

[53]  Gareth M. Fuge,et al.  Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods , 2004 .

[54]  Gyu-Chul Yi,et al.  Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods , 2002 .

[55]  D. Lincot,et al.  Cathodic electrodeposition from aqueous solution of dense or open‐structured zinc oxide films , 1996 .

[56]  Hamberg,et al.  Band-gap tailoring of ZnO by means of heavy Al doping. , 1988, Physical review. B, Condensed matter.

[57]  Weizhuo Zhong,et al.  Growth mechanism and growth habit of oxide crystals , 1999 .

[58]  Yi Gu,et al.  Quantum confinement in ZnO nanorods , 2004 .

[59]  Daniel Lincot,et al.  Toward laser emission of epitaxial nanorod arrays of ZnO grown by electrodeposition , 2006 .

[60]  Peidong Yang,et al.  Transition-metal doped zinc oxide nanowires. , 2006, Angewandte Chemie.

[61]  J. Scott uv Resonant Raman Scattering in ZnO , 1970 .

[62]  Masashi Kawasaki,et al.  High Mobility Thin Film Transistors with Transparent ZnO Channels , 2003 .

[63]  David S. Ginley,et al.  Transparent Conducting Oxides , 2000 .

[64]  Jow-Lay Huang,et al.  ZnO nanopencils: Efficient field emitters , 2005 .

[65]  G. Exarhos,et al.  Mott–Schottky analysis of thin ZnO films , 2000 .

[66]  Manuel Cardona,et al.  Resonant Raman scattering in ZnO , 1977 .

[67]  A. P. Roth,et al.  Band-gap narrowing in heavily defect-doped ZnO , 1982 .

[68]  Pedro Barquinha,et al.  Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature , 2004 .

[69]  R. Könenkamp,et al.  Ultraviolet electroluminescence from ZnO/polymer heterojunction light-emitting diodes. , 2005, Nano letters.

[70]  Eicke R. Weber,et al.  Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport , 2001 .

[71]  Jingbiao Cui,et al.  Enhanced nucleation, growth rate, and dopant incorporation in ZnO nanowires. , 2005, The journal of physical chemistry. B.

[72]  J. Morante,et al.  Synthesis of Silicon Nanowires with Wurtzite Crystalline Structure by Using Standard Chemical Vapor Deposition , 2007 .

[73]  M. R. Wagner,et al.  Resonant Raman scattering at exciton intermediate states in ZnO , 2007 .

[74]  Daniel Lincot,et al.  Mechanistic Study of Cathodic Electrodeposition of Zinc Oxide and Zinc Hydroxychloride Films from Oxygenated Aqueous Zinc Chloride Solutions , 1998 .

[75]  Yu Hang Leung,et al.  Optical properties of ZnO nanostructures. , 2006, Small.

[76]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[77]  T. Moss The Interpretation of the Properties of Indium Antimonide , 1954 .