Debris interactions in reactor vessel lower plena during a severe accident II. Integral analysis

Abstract The integral physico-numerical model for the reactor vessel lower head response has been exercised for the TMI-2 accident and possible severe accident scenarios in PWR and BWR designs. The proposed inherent cooling mechanism of the reactor material creep and subsequent water ingression implemented in this predictive model provides a consistent representation of how the debris was finally cooled in the TMI-2 accident and how the reactor lower head integrity was maintained during the course of the incident. It should be recalled that in order for this strain to occur, the vessel lower head had to achieve temperatures in excess of 1000 °C. This is certainly in agreement with the temperatures determined by metallographic examinations during the TMI-2 Vessel Inspection Program. The integral model was also applied to typical PWR and BWR lower plena with and without structures under pressurized conditions spanning the first relocation of core material to the reactor vessel failure due to creep without recovery actions. The design application results are presented with particular attention being focused on water ingression into the debris bed through the gap formed between the debris and the vessel wall. As an illustration of the accident management application, the lower plenum with structures was recovered after an extensive amount of creep had damaged the vessel wall. The computed lower head temperatures were found to be significantly lower (by more than 300 K in this particular example) with recovery relative to the case without recovery. This clearly demonstrates the potential for in-vessel cooling of the reactor vessel without a need to externally submerge the lower head should such a severe accident occur as core melting and relocation.