Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians

An explicit upper bound is derived for the number of the zeros of the integral of degree n polynomials f, g, on the open interval for which the cubic curve contains an oval. The proof exploits the properties of the Picard-Fuchs system satisfied by the four basic integrals , i,j=0,1, generating the module of complete Abelian integrals I(h) (over the ring of polynomials in h).

[1]  G. S. Petrov,et al.  Number of zeros of complete elliptic integrals , 1984 .

[2]  Sergei Yakovenko,et al.  Complete Abelian integrals as rational envelopes , 1994 .

[3]  Sergei Yakovenko,et al.  Counting Real Zeros of Analytic Functions Satisfying Linear Ordinary Differential Equations , 1996 .

[4]  Emil Horozov,et al.  Limit cycles and zeroes of Abelian integrals satisfying third order picard — Fuchs equations , 1990 .

[5]  Iliya D. Iliev,et al.  Perturbations of quadratic centers , 1998 .

[6]  Lubomir Gavrilov,et al.  Petrov modules and zeros of Abelian integrals , 1998 .

[7]  Ju S Il'jašenko THE ORIGIN OF LIMIT CYCLES UNDER PERTURBATION OF THE EQUATION dw/dz = - Rz/Rw, WHERE R(z, w) IS A POLYNOMIAL , 1969 .

[8]  Askold Khovanskii,et al.  Real analytic varieties with the finiteness property and complex abelian integrals , 1984 .

[9]  Lubomir Gavrilov Nonoscillation of Elliptic Integrals Related to Cubic Polynomials with Symmetry of Order Three , 1998 .

[10]  G. S. Petrov Elliptic integrals and their nonoscillation , 1986 .

[11]  Dmitry Novikov,et al.  Simple exponential estimate for the number of real zeros of complete abelian integrals , 1995 .

[12]  Iliya D. Iliev,et al.  On the Number of Limit Cycles in Perturbations of Quadratic Hamiltonian Systems , 1994 .

[13]  V. I. Arnol'd,et al.  Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields , 1977 .

[14]  P. Mardešić The number of limit cycles of polynomial deformations of a Hamiltonian vector field , 1990 .

[15]  Christiane Rousseau,et al.  Zeroes of complete elliptic integrals for 1:2 resonance , 1991 .

[16]  Jean-Pierre Francoise,et al.  Successive derivatives of a first return map, application to the study of quadratic vector fields , 1996, Ergodic Theory and Dynamical Systems.

[17]  Alexander Varchenko,et al.  Estimate of the number of zeros of an abelian integral depending on a parameter and limit cycles , 1984 .

[18]  Uuliî Il'yashenko,et al.  Double exponential estimate for the number of zeros of complete Abelian integrals , 1995 .