2D photonic crystal protein hydrogel coulometer for sensing serum albumin ligand binding.

Bovine and human serum albumin (BSA and HSA) are globular proteins that function as bloodstream carriers of hydrophobes such as fatty acids and drugs. We fabricated novel photonic crystal protein hydrogels by attaching 2D colloidal arrays onto pure BSA and HSA hydrogels. The wavelengths of the diffracted light sensitively report on the protein hydrogel surface area. The binding of charged species to the protein hydrogel gives rise to Donnan potentials that change the hydrogel volume causing shifts in the diffraction. These photonic crystal protein hydrogels act as sensitive Coulometers that monitor the hydrogel charge state. We find multiple high-affinity BSA and HSA binding sites for salicylate, ibuprofen and picosulfate by using these sensors to monitor binding of charged drugs. We demonstrate proof-of-concept for utilizing protein hydrogel sensors to monitor protein-ionic species binding.

[1]  Tianmin Wang,et al.  Rapid fabrication of large-area colloidal crystal monolayers by a vortical surface method. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[2]  J. Reynolds,et al.  The binding of some long-chain fatty acid anions and alcohols by bovine serum albumin. , 1968, Biochemistry.

[3]  Sheridan M. Hoy,et al.  Sodium Picosulfate/Magnesium Citrate , 2009, Drugs.

[4]  Luling Wang,et al.  Fabrication of large-area two-dimensional colloidal crystals. , 2012, Angewandte Chemie.

[5]  S. Asher,et al.  Reflectivity enhanced two-dimensional dielectric particle array monolayer diffraction , 2012 .

[6]  S. Bykov,et al.  Steady-State and Transient Ultraviolet Resonance Raman Spectrometer for the 193–270 nm Spectral Region , 2005, Applied spectroscopy.

[7]  S. Asher,et al.  Ultraviolet resonance Raman excitation profiles of tyrosine: dependence of Raman cross sections on excited-state intermediates , 1988 .

[8]  M. J. Crooks,et al.  Binding of nonsteroidal anti-inflammatory agents to proteins--I. Ibuprofen-serum albumin interaction. , 1979, Biochemical pharmacology.

[9]  J. Rogers,et al.  Ultrathin Films of Single‐Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects , 2009 .

[10]  W. Murphy,et al.  Protein‐Based Hydrogels with Tunable Dynamic Responses , 2008 .

[11]  S. Asher,et al.  Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials , 1997, Nature.

[12]  M. Madou,et al.  Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics , 2005, Nature Materials.

[13]  L. Andrew Lyon,et al.  Bioresponsive hydrogels for sensing applications , 2009 .

[14]  T. Swager,et al.  Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects , 1998 .

[15]  Zhen Gu,et al.  Detection of mercury ion by infrared fluorescent protein and its hydrogel-based paper assay. , 2011, Analytical chemistry.

[16]  Luis Montenegro,et al.  Determination of Critical Micelle Concentration of Some Surfactants by Three Techniques , 1997 .

[17]  Sanford A. Asher,et al.  Thermally Switchable Periodicities and Diffraction from Mesoscopically Ordered Materials , 1996, Science.

[18]  Luling Wang,et al.  2-D array photonic crystal sensing motif. , 2011, Journal of the American Chemical Society.

[19]  J. Harden,et al.  Self-assembling protein hydrogels with modular integrin binding domains. , 2006, Biomacromolecules.

[20]  Marc D. Woodka,et al.  Use of spatiotemporal response information from sorption-based sensor arrays to identify and quantify the composition of analyte mixtures. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[21]  S. Asher,et al.  Polymerized PolyHEMA photonic crystals: pH and ethanol sensor materials. , 2008, Journal of the American Chemical Society.

[22]  M. J. Crooks,et al.  Displacement of tolbutamide, glibencalmide and chlorpropamide from serum albumin by anionic drugs. , 1976, Biochemical pharmacology.

[23]  Yadong Yin,et al.  Responsive photonic crystals. , 2011, Angewandte Chemie.

[24]  Michael J Sailor,et al.  "Smart dust": nanostructured devices in a grain of sand. , 2005, Chemical communications.

[25]  Shannon E. Stitzel,et al.  Cross-reactive chemical sensor arrays. , 2000, Chemical reviews.

[26]  M. Subirade,et al.  Characterization of amino cross-linked soy protein hydrogels. , 2008, Journal of food science.

[27]  Sylvia Daunert,et al.  Glucose responsive hydrogel networks based on protein recognition. , 2009, Macromolecular bioscience.

[28]  S. Asher,et al.  UV resonance Raman and DFT studies of arginine side chains in peptides: insights into arginine hydration. , 2013, The journal of physical chemistry. B.

[29]  S. Asher,et al.  UV Raman Determination of the Environment and Solvent Exposure of Tyr and Trp Residues , 1998 .

[30]  U Kragh-Hansen,et al.  Molecular aspects of ligand binding to serum albumin. , 1981, Pharmacological reviews.

[31]  M. S. Lewis,et al.  THE BINDING OF CALCIUM IONS TO SERUM ALBUMIN , 1963 .

[32]  L. Andrew Lyon,et al.  Design of Multiresponsive Hydrogel Particles and Assemblies , 2010 .

[33]  Igor K Lednev,et al.  UV resonance Raman investigations of peptide and protein structure and dynamics. , 2012, Chemical reviews.

[34]  S. Asher,et al.  Entropic trapping of macromolecules by mesoscopic periodic voids in a polymer hydrogel , 1999, Nature.

[35]  Subinoy Rana,et al.  Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein. , 2009, Nature chemistry.

[36]  M. Tabak,et al.  Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: spectroscopy and modelling. , 2002, Biochimica et biophysica acta.

[37]  T. Peters 2 - The Albumin Molecule: Its Structure and Chemical Properties , 1995 .

[38]  S. Asher,et al.  Emulsifier-free emulsion polymerization produces highly charged, monodisperse particles for near infrared photonic crystals. , 2002, Journal of colloid and interface science.

[39]  A A Spector,et al.  Fatty acid binding to plasma albumin. , 1975, Journal of lipid research.

[40]  David Erickson,et al.  Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale , 2008, Microfluidics and nanofluidics.

[41]  Paul V. Braun,et al.  ast response photonic crystal pH sensor based on templated hoto-polymerized hydrogel inverse opal , 2010 .

[42]  V. Uversky,et al.  Hen egg white lysozyme fibrillation: a deep‐UV resonance Raman spectroscopic study , 2008, Journal of biophotonics.

[43]  N. Fogh‐Andersen Albumin/calcium association at different pH, as determined by potentiometry. , 1977, Clinical chemistry.

[44]  K. O. Pedersen Binding of calcium to serum albumin. I. Stoichiometry and intrinsic association constant at physiological pH, ionic strength, and temperature. , 1971, Scandinavian journal of clinical and laboratory investigation.

[45]  D. Shah,et al.  Cooperativity among Molecules at Interfaces in Relation to Various Technological Processes: Effect of Chain Length on the pKa of Fatty Acid Salt Solutions† , 2000 .

[46]  O. Velev,et al.  Two-dimensional crystallization of microspheres by a coplanar AC electric field. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[47]  S. Asher,et al.  Two-dimensional photonic crystal surfactant detection. , 2012, Analytical chemistry.

[48]  S. Moncheva,et al.  Intrinsic Tryptophan Fluorescence of Human Serum Proteins and Related Conformational Changes , 2000, Journal of protein chemistry.

[49]  Zhilei Chen,et al.  Two-component protein hydrogels assembled using an engineered disulfide-forming protein-ligand pair. , 2013, Biomacromolecules.

[50]  Sanford A. Asher,et al.  UV resonance Raman excitation profiles of the aromatic amino acids , 1986 .