Growth of Schreier graphs of automaton groups

Every automaton group naturally acts on the space Xω of infinite sequences over some alphabet X. For every $${w \in X^{\omega}}$$ we consider the Schreier graph Γw of the action of the group on the orbit of w. We prove that for a large class of automaton groups all Schreier graphs Γw have subexponential growth bounded above by $${n^{(\log n)^m}}$$ with some constant m. In particular, this holds for all groups generated by automata with polynomial activity growth (in terms of S. Sidki), confirming a conjecture of V. Nekrashevych. We present applications to ω-periodic graphs and Hanoi graphs.

[1]  Laurent Bartholdi,et al.  On the Spectrum of Hecke Type Operators related to some Fractal Groups , 1999 .

[2]  Jian Shen,et al.  On the Frame--Stewart Conjecture about the Towers of Hanoi , 2004, SIAM J. Comput..

[3]  James Tanton Mathematics Galore!: The Tower of Hanoi , 2012 .

[4]  Said Sidki,et al.  Finite Automata of Polynomial Growth do Not Generate A Free Group , 2004 .

[5]  Volodymyr Nekrashevych,et al.  Free subgroups in groups acting on rooted trees , 2008, 0802.2554.

[6]  Ievgen Bondarenko,et al.  Post-critically finite self-similar groups , 2007 .

[7]  Volodymyr Nekrashevych,et al.  Self-Similar Groups , 2005, 2304.11232.

[8]  R. Grigorchuk,et al.  Asymptotic aspects of Schreier graphs and Hanoi Towers groups , 2006 .

[9]  Laurent Bartholdi,et al.  On amenability of automata groups , 2008, 0802.2837.

[10]  Itai Benjamini,et al.  ω-Periodic Graphs , 2005, Electron. J. Comb..

[11]  R. Grigorchuk,et al.  From fractal groups to fractal sets , 2002, math/0202001.

[12]  Omer Angel,et al.  Amenability of linear-activity automaton groups , 2013 .

[13]  Sandi Klavzar,et al.  On the Frame-Stewart algorithm for the multi-peg Tower of Hanoi problem , 2002, Discret. Appl. Math..

[14]  Volodymyr Nekrashevych,et al.  Amenable actions of nonamenable groups , 2007 .

[15]  Mario Szegedy,et al.  In How Many Steps the k Peg Version of the Towers of Hanoi Game Can Be Solved? , 1999, STACS.

[16]  Tullio Ceccherini-Silberstein,et al.  On a family of Schreier graphs of intermediate growth associated with a self-similar group , 2011, Eur. J. Comb..

[17]  Z. Sunic,et al.  Schreier spectrum of the Hanoi Towers group on three pegs , 2007, 0711.0068.

[18]  T. Nagnibeda,et al.  Schreier graphs of the Basilica group , 2010 .

[19]  I. Bondarenko Groups generated by bounded automata and their schreier graphs , 2007 .

[21]  Said Sidki,et al.  Automorphisms of one-rooted trees: Growth, circuit structure, and acyclicity , 2000 .