Isoholonomic problems and some applications

We study the problem of finding the shortest loops with a given holonomy. We show that the solutions are the trajectories of particles in Yang-Mills potentials (Theorem 4), or, equivalently, the projections of Kaluza-Klein geodesics (Theorem 2). Applications to quantum mechanics (Berry's phase, Sect. 3) and the optimal control of deformable bodies (Sect. 6) are touched upon.

[1]  Gilbert Ames Bliss The Problem of Lagrange in the Calculus of Variations , 1930 .

[2]  Wei-Liang Chow Über Systeme von liearren partiellen Differentialgleichungen erster Ordnung , 1940 .

[3]  Wei-Liang Chow Über Systeme von linearen partiellen Differential-gleichungen erster Ordnung , 1941 .

[4]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[5]  I. M. Singer,et al.  A THEOREM ON HOLONOMY , 1953 .

[6]  R. Courant,et al.  Methods of Mathematical Physics, Vol. I , 1954 .

[7]  A. J. Barret,et al.  Methods of Mathematical Physics, Volume I . R. Courant and D. Hilbert. Interscience Publishers Inc., New York. 550 pp. Index. 75s. net. , 1954, The Journal of the Royal Aeronautical Society.

[8]  Robert Hermann,et al.  Some differential-geometric aspects of the Lagrange variational problem , 1962 .

[9]  Constantin Carathéodory,et al.  Calculus of variations and partial differential equations of the first order , 1965 .

[10]  T. Kane,et al.  A dynamical explanation of the falling cat phenomenon , 1969 .

[11]  S. K. Wong Field and particle equations for the classical Yang-Mills field and particles with isotopic spin , 1970 .

[12]  Robert Hermann,et al.  Geodesics of singular Riemannian metrics , 1973 .

[13]  Lagrangian and Hamiltonian Descriptions of Yang-Mills Particles , 1978 .

[14]  J. Baillieul Geometric methods for nonlinear optimal control problems , 1978 .

[15]  Singiresu S. Rao,et al.  Optimization Theory and Applications , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[16]  A. Weinstein Fat bundles and symplectic manifolds , 1980 .

[17]  R. Brockett Control Theory and Singular Riemannian Geometry , 1982 .

[18]  Barry Simon,et al.  Holonomy, the Quantum Adiabatic Theorem, and Berry's Phase , 1983 .

[19]  Cesari, L., Optimization — Theory and Applications. Problems with Ordinary Differential Equations. Berlin-Heidelberg-New York, Springer-Verlag 1983. XIV, 542 S., 82 Abb., DM 178,-. US $ 76.80. ISBN 3-540-90676-2 (Applications of Mathematics 17) , 1984 .

[20]  Richard Montgomery Canonical formulations of a classical particle in a Yang-Mills field and Wong's equations , 1984 .

[21]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  Frank Wilczek,et al.  Appearance of Gauge Structure in Simple Dynamical Systems , 1984 .

[23]  M. Berry Classical adiabatic angles and quantal adiabatic phase , 1985 .

[24]  Tomita,et al.  Observation of Berry's topological phase by use of an optical fiber. , 1986, Physical review letters.

[25]  Aharonov,et al.  Phase change during a cyclic quantum evolution. , 1987, Physical review letters.

[26]  V. Arnold,et al.  Dynamical Systems III , 1987 .

[27]  Toshihiro Iwai,et al.  A geometric setting for classical molecular dynamics , 1987 .

[28]  F. Wilczek,et al.  Self-propulsion at low Reynolds number. , 1987, Physical review letters.

[29]  T. Iwai A geometric setting for internal motions of the quantum three-body system , 1987 .

[30]  R. Tycko,et al.  Adiabatic rotational splittings and Berry's phase in nuclear quadrupole resonance. , 1987, Physical review letters.

[31]  L. E. Faibusovich Explicitly solvable non-linear optimal control problems , 1988 .

[32]  D. Suter,et al.  Study of the Aharonov-Anandan Phase by NMR Interferometry , 1988 .

[33]  Pines,et al.  Study of the Aharonov-Anandan quantum phase by NMR interferometry. , 1988, Physical review letters.

[34]  Frank Wilczek,et al.  Gauge kinematics of deformable bodies , 1989 .

[35]  T. Taylor SOME ASPECTS OF DIFFERENTIAL GEOMETRY ASSOCIATED WITH HYPOELLIPTIC SECOND ORDER OPERATORS , 1989 .

[36]  Barry Simon,et al.  Chern numbers, quaternions, and Berry's phases in Fermi systems , 1989 .

[37]  Ursula Hamenstädt,et al.  Some regularity theorems for Carnot-Carathéodory metrics , 1990 .

[38]  Frédéric Jean,et al.  Sub-Riemannian Geometry , 2022 .