Spectral bounds for unconstrained (-1, 1)-quadratic optimization problems

Given an unconstrained quadratic optimization problem in the following form:with , we present different methods for computing bounds on its optimal objective value. Some of the lower bounds introduced are shown to generally improve over the one given by a classical semidefinite relaxation. We report on theoretical results on these new bounds and provide preliminary computational experiments on small instances of the maximum cut problem illustrating their performance.

[1]  Charles Delorme,et al.  Combinatorial Properties and the Complexity of a Max-cut Approximation , 1993, Eur. J. Comb..

[2]  Peter L. Hammer,et al.  Some remarks on quadratic programming with 0-1 variables , 1970 .

[3]  P. L. Ivanescu Some Network Flow Problems Solved with Pseudo-Boolean Programming , 1965 .

[4]  B. Mohar,et al.  Eigenvalues and the max-cut problem , 1990 .

[5]  Imad M. Jaimoukha,et al.  On the gap between the quadratic integer programming problem and its semidefinite relaxation , 2006, Math. Program..

[6]  Franz Rendl,et al.  Nonpolyhedral Relaxations of Graph-Bisection Problems , 1995, SIAM J. Optim..

[7]  Martin Grötschel,et al.  Via Minimization with Pin Preassignments and Layer Preference , 1989 .

[8]  Uriel Feige,et al.  On the integrality ratio of semidefinite relaxations of MAX CUT , 2001, STOC '01.

[9]  Walid Ben-Ameur,et al.  A polynomial-time recursive algorithm for some unconstrained quadratic optimization problems , 2011, Discret. Appl. Math..

[10]  A. Shapiro,et al.  Duality and Optimality Conditions , 2000 .

[11]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[12]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[13]  Caterina De Simone,et al.  The cut polytope and the Boolean quadric polytope , 1990, Discret. Math..

[14]  Charles Delorme,et al.  Laplacian eigenvalues and the maximum cut problem , 1993, Math. Program..

[15]  Alain Billionnet,et al.  Using a Mixed Integer Quadratic Programming Solver for the Unconstrained Quadratic 0-1 Problem , 2007, Math. Program..

[16]  Béla Bollobás,et al.  Random Graphs , 1985 .

[17]  Jacques Desrosiers,et al.  Selected Topics in Column Generation , 2002, Oper. Res..

[18]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[20]  R. Pinter Optimal layer assignment for interconnect , 1984 .

[21]  Christophe Meyer,et al.  Polynomially solvable cases of the constant rank unconstrained quadratic 0-1 programming problem , 2006, J. Comb. Optim..

[22]  Endre Boros,et al.  The max-cut problem and quadratic 0–1 optimization; polyhedral aspects, relaxations and bounds , 1991, Ann. Oper. Res..

[23]  Franz Rendl,et al.  A Branch and Bound Algorithm for Max-Cut Based on Combining Semidefinite and Polyhedral Relaxations , 2007, IPCO.

[24]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[25]  Martin Grötschel,et al.  An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design , 1988, Oper. Res..

[26]  Erich Steiner,et al.  A polynomial case of unconstrained zero-one quadratic optimization , 2001, Math. Program..