On the possibility of using model potentials for collision integral calculations of interest for planetary atmospheres

Abstract The interaction energy in systems (atom–atom, atom–ion and atom–molecule) involving open-shell species, predicted by a phenomenological method, is used for collision integral calculations. The results are compared with those obtained by different authors by using the complete set of quantum mechanical interaction potentials arizing from the electronic configurations of separate partners. A satisfactory agreement is achieved, implying that the effect of deep potential wells, present in some of the chemical potentials, is cancelled by the effect of strong repulsive potentials.

[1]  Fernando Pirani,et al.  Generalized correlations in terms of polarizability for van der Waals interaction potential parameter calculations , 1991 .

[2]  M. Wright,et al.  Recommended Collision Integrals for Transport Property Computations Part 1: Air Species , 2005 .

[3]  M. Capitelli,et al.  Comment on ‘‘Spin‐polarized atomic nitrogen and the 7Σ+u state of N2’’ , 1983 .

[4]  Eugene Levin,et al.  Potential Energies and Collision Integrals for Interactions of Carbon and Nitrogen Atoms , 2000 .

[5]  Savino Longo,et al.  Collision Integrals of High-Temperature Air Species , 2000 .

[6]  Fernando Pirani,et al.  Atom–bond pairwise additive representation for intermolecular potential energy surfaces , 2004 .

[7]  J. E. Morgan,et al.  DIFFUSION COEFFICIENTS OF O AND N ATOMS IN INERT GASES , 1964 .

[8]  J. Rainwater,et al.  Binary collision dynamics and numerical evaluation of dilute gas transport properties for potentials with multiple extrema , 1982 .

[9]  V. Aquilanti,et al.  Range and strength of interatomic forces: dispersion and induction contributions to the bonds of dications and of ionic molecules , 1996 .

[10]  M. Wright,et al.  Collision Integrals for Ion-Neutral Interactions of Nitrogen and Oxygen , 2004 .

[11]  E. Levin,et al.  Collision integrals and high temperature transport properties for N-N, O-O, and N-O , 1990 .

[12]  Fernando Pirani,et al.  Range, strength and anisotropy of intermolecular forces in atom–molecule systems: an atom–bond pairwise additivity approach , 2001 .

[13]  E. Levin,et al.  Resonance charge transfer, transport cross sections, and collision integrals for N(+)(3P)-N(4S0) and O(+)(4S0)-O(3P) interactions , 1991 .

[14]  J. Aubreton,et al.  Calcul de propriétés thermodynamiques et des coefficients de transport dans un plasma Ar-O2 en non-équilibre thermodynamique et à la pression atmosphérique , 1986 .

[15]  Eugene Levin,et al.  Effective Potential Energies and Transport Cross Sections for Atom-Molecule Interactions of Nitrogen and Nitrogen , 2001 .

[16]  Fernando Pirani,et al.  Regularities in van der Waals forces: correlation between the potential parameters and polarizability , 1985 .

[17]  Fernando Pirani,et al.  Generalization to ion—neutral systems of the polarizability correlations for interaction potential parameters , 1991 .

[18]  F. Pirani,et al.  Study of the interactions of atomic and molecular oxygen with O2 and N2 by scattering data , 1981 .

[19]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[20]  Fernando Pirani,et al.  Experimental benchmarks and phenomenology of interatomic forces: open-shell and electronic anisotropy effects , 2006 .