Distribution of CO2 fixation and acetate mineralization pathways in microorganisms from extremophilic anaerobic biotopes

[1]  T. Tourova,et al.  Fuchsiella alkaliacetigena gen. nov., sp. nov., an alkaliphilic, lithoautotrophic homoacetogen from a soda lake. , 2012, International journal of systematic and evolutionary microbiology.

[2]  A. Oren,et al.  Living with salt: metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. , 2012, FEMS microbiology letters.

[3]  W. Martin Hydrogen, metals, bifurcating electrons, and proton gradients: The early evolution of biological energy conservation , 2012, FEBS letters.

[4]  N. Pimenov,et al.  Sulfidogenesis in hypersaline chloride-sulfate lakes of Kulunda Steppe (Altai, Russia). , 2012, FEMS microbiology ecology.

[5]  H. Morowitz,et al.  What is an autotroph? , 2012, Archives of Microbiology.

[6]  M. Lever Acetogenesis in the Energy-Starved Deep Biosphere – A Paradox? , 2011, Front. Microbio..

[7]  M. Klotz,et al.  The Microbial Sulfur Cycle , 2011, Front. Microbio..

[8]  G. Fuchs Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? , 2011, Annual review of microbiology.

[9]  A. Oren Thermodynamic limits to microbial life at high salt concentrations. , 2011, Environmental microbiology.

[10]  R. Amils,et al.  Methanogenesis in the sediments of Rio Tinto, an extreme acidic river. , 2011, Environmental microbiology.

[11]  Yahai Lu,et al.  Syntrophic acetate oxidation under thermophilic methanogenic condition in Chinese paddy field soil. , 2011, FEMS microbiology ecology.

[12]  R. Amils,et al.  Microbial Diversity in Anaerobic Sediments at Río Tinto, a Naturally Acidic Environment with a High Heavy Metal Content , 2011, Applied and Environmental Microbiology.

[13]  Daisuke Sasaki,et al.  Detection of active, potentially acetate-oxidizing syntrophs in an anaerobic digester by flux measurement and formyltetrahydrofolate synthetase (FTHFS) expression profiling. , 2011, Microbiology.

[14]  R. Margesin,et al.  Diversity and ecology of psychrophilic microorganisms. , 2011, Research in microbiology.

[15]  R. Conrad,et al.  Chemolithotrophic acetogenic H2/CO2 utilization in Italian rice field soil , 2011, The ISME Journal.

[16]  Nanette R. Boyle,et al.  Computation of metabolic fluxes and efficiencies for biological carbon dioxide fixation. , 2011, Metabolic engineering.

[17]  J. G. Kuenen,et al.  The Microbial Sulfur Cycle at Extremely Haloalkaline Conditions of Soda Lakes , 2011, Front. Microbio..

[18]  S. Haruta,et al.  Distinctive Responses of Metabolically Active Microbiota to Acidification in a Thermophilic Anaerobic Digester , 2011, Microbial Ecology.

[19]  I. Berg Ecological Aspects of the Distribution of Different Autotrophic CO2 Fixation Pathways , 2011, Applied and Environmental Microbiology.

[20]  S. Spring,et al.  Complete genome sequence of Acetohalobium arabaticum type strain (Z-7288T) , 2010, Standards in genomic sciences.

[21]  J. P. Cárdenas,et al.  Lessons from the genomes of extremely acidophilic bacteria and archaea with special emphasis on bioleaching microorganisms , 2010, Applied Microbiology and Biotechnology.

[22]  C. Sasikala,et al.  Description of Ectothiorhodospira salini sp. nov. , 2010, The Journal of general and applied microbiology.

[23]  K. Tang,et al.  Both Forward and Reverse TCA Cycles Operate in Green Sulfur Bacteria* , 2010, The Journal of Biological Chemistry.

[24]  David Bastviken,et al.  Temperature-controlled organic carbon mineralization in lake sediments , 2010, Nature.

[25]  G. Muyzer,et al.  Ribulose-1,5-bisphosphate carboxylase/oxygenase genes as a functional marker for chemolithoautotrophic halophilic sulfur-oxidizing bacteria in hypersaline habitats. , 2010, Microbiology.

[26]  G. Fuchs,et al.  Autotrophic carbon fixation in archaea , 2010, Nature Reviews Microbiology.

[27]  R. Milo,et al.  Design and analysis of synthetic carbon fixation pathways , 2010, Proceedings of the National Academy of Sciences.

[28]  B. Ollivier,et al.  Desulfosporosinus acidiphilus sp. nov.: a moderately acidophilic sulfate-reducing bacterium isolated from acid mining drainage sediments , 2010, Extremophiles.

[29]  J. Dolfing,et al.  Anomalous energy yields in thermodynamic calculations: importance of accounting for pH-dependent organic acid speciation , 2010, The ISME Journal.

[30]  R. Conrad,et al.  Stable carbon isotope fractionation by acetotrophic sulfur-reducing bacteria. , 2010, FEMS microbiology ecology.

[31]  R. Rabus,et al.  Substrate-Dependent Regulation of Carbon Catabolism in Marine Sulfate-Reducing Desulfobacterium autotrophicum HRM2 , 2010, Journal of Molecular Microbiology and Biotechnology.

[32]  R. Gunsalus,et al.  Syntrophy in anaerobic global carbon cycles. , 2009, Current opinion in biotechnology.

[33]  G. Muyzer,et al.  Propionate and butyrate dependent bacterial sulfate reduction at extremely haloalkaline conditions and description of Desulfobotulus alkaliphilus sp. nov. , 2009, Extremophiles.

[34]  H. Drake,et al.  Intermediary ecosystem metabolism as a main driver of methanogenesis in acidic wetland soil. , 2009, Environmental microbiology reports.

[35]  Alfons J. M. Stams,et al.  Electron transfer in syntrophic communities of anaerobic bacteria and archaea , 2009, Nature Reviews Microbiology.

[36]  Christine L. Sun,et al.  Community Genomic and Proteomic Analyses of Chemoautotrophic Iron-Oxidizing “Leptospirillum rubarum” (Group II) and “Leptospirillum ferrodiazotrophum” (Group III) Bacteria in Acid Mine Drainage Biofilms , 2009, Applied and Environmental Microbiology.

[37]  J. P. Cárdenas,et al.  Comparative Genomics Begins to Unravel the Ecophysiology of Bioleaching , 2009 .

[38]  C. Blank Phylogenomic dating--a method of constraining the age of microbial taxa that lack a conventional fossil record. , 2009, Astrobiology.

[39]  C. Blank Phylogenomic dating--the relative antiquity of archaeal metabolic and physiological traits. , 2009, Astrobiology.

[40]  Hanqing Yu,et al.  Effects of temperature and substrate concentration on biological hydrogen production from starch , 2009 .

[41]  E. Casamayor,et al.  Fingerprinting the genetic diversity of the biotin carboxylase gene (accC) in aquatic ecosystems as a potential marker for studies of carbon dioxide assimilation in the dark. , 2008, Environmental microbiology.

[42]  K. Takai,et al.  Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. , 2008, FEMS microbiology ecology.

[43]  Laura J. Crossey,et al.  Molecular Characterization of the Diversity and Distribution of a Thermal Spring Microbial Community by Using rRNA and Metabolic Genes , 2008, Applied and Environmental Microbiology.

[44]  W. Eisenreich,et al.  A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis , 2008, Proceedings of the National Academy of Sciences.

[45]  M. Koschorreck Microbial sulphate reduction at a low pH. , 2008, FEMS microbiology ecology.

[46]  A. Oren Microbial life at high salt concentrations: phylogenetic and metabolic diversity , 2008, Saline systems.

[47]  H. Drake,et al.  Old Acetogens, New Light , 2008, Annals of the New York Academy of Sciences.

[48]  Lars Rohlin,et al.  Physiology, Ecology, Phylogeny, and Genomics of Microorganisms Capable of Syntrophic Metabolism , 2008, Annals of the New York Academy of Sciences.

[49]  W. Whitman,et al.  Metabolic, Phylogenetic, and Ecological Diversity of the Methanogenic Archaea , 2008, Annals of the New York Academy of Sciences.

[50]  J. Amend,et al.  A "follow the energy" approach for astrobiology. , 2007, Astrobiology.

[51]  G. Fuchs,et al.  A 3-Hydroxypropionate/4-Hydroxybutyrate Autotrophic Carbon Dioxide Assimilation Pathway in Archaea , 2007, Science.

[52]  Á. Aguilera,et al.  Prokaryotic community composition and ecology of floating macroscopic filaments from an extreme acidic environment, Río Tinto (SW, Spain). , 2007, Systematic and applied microbiology.

[53]  Pierre Regnier,et al.  Modeling Microbially Induced Carbon Degradation in Redox-Stratified Subsurface Environments: Concepts and Open Questions , 2007 .

[54]  Harald Huber,et al.  Ignicoccus hospitalis sp. nov., the host of 'Nanoarchaeum equitans'. , 2007, International journal of systematic and evolutionary microbiology.

[55]  David L. Valentine,et al.  Opinion: Adaptations to energy stress dictate the ecology and evolution of the Archaea , 2007, Nature Reviews Microbiology.

[56]  P. Frenzel,et al.  Methanogenesis and methanogenic pathways in a peat from subarctic permafrost. , 2007, Environmental microbiology.

[57]  K. Timmis,et al.  Shift from Acetoclastic to H2-Dependent Methanogenesis in a West Siberian Peat Bog at Low pH Values and Isolation of an Acidophilic Methanobacterium Strain , 2007, Applied and Environmental Microbiology.

[58]  E. Pikuta,et al.  Microbial Extremophiles at the Limits of Life , 2007, Critical reviews in microbiology.

[59]  D. Canfield,et al.  Early anaerobic metabolisms , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[60]  B. Jørgensen,et al.  Desulfuromonas svalbardensis sp. nov. and Desulfuromusa ferrireducens sp. nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard. , 2006, International journal of systematic and evolutionary microbiology.

[61]  K. Timmis,et al.  The 'pH optimum anomaly' of intracellular enzymes of Ferroplasma acidiphilum. , 2006, Environmental microbiology.

[62]  M. Fields,et al.  Microbial Diversity in Sediments of Saline Qinghai Lake, China: Linking Geochemical Controls to Microbial Ecology , 2006, Microbial Ecology.

[63]  Kelly P. Nevin,et al.  Geobacter bemidjiensis sp. nov. and Geobacter psychrophilus sp. nov., two novel Fe(III)-reducing subsurface isolates. , 2005, International journal of systematic and evolutionary microbiology.

[64]  O. Kotsyurbenko,et al.  Trophic interactions in the methanogenic microbial community of low-temperature terrestrial ecosystems. , 2005, FEMS microbiology ecology.

[65]  J. G. Kuenen,et al.  Chemolithotrophic haloalkaliphiles from soda lakes. , 2005, FEMS microbiology ecology.

[66]  J. Amend,et al.  A thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro‐organisms in oxic and anoxic environments , 2005 .

[67]  Larry L. Barton,et al.  Structural and Functional Relationships in Prokaryotes , 2004 .

[68]  W. Grant Life at low water activity. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[69]  M. A. Pusheva,et al.  Comparative Study of the Energy Metabolism of Anaerobic Alkaliphiles from Soda Lakes , 2004, Microbiology.

[70]  B. Campbell,et al.  Evidence of Chemolithoautotrophy in the Bacterial Community Associated with Alvinella pompejana, a Hydrothermal Vent Polychaete , 2003, Applied and Environmental Microbiology.

[71]  Haruyuki Atomi,et al.  Microbial enzymes involved in carbon dioxide fixation. , 2002, Journal of bioscience and bioengineering.

[72]  M. McInerney,et al.  Anaerobic microbial metabolism can proceed close to thermodynamic limits , 2002, Nature.

[73]  B. Patel,et al.  Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. , 2000, Anaerobe.

[74]  P. Mccarty,et al.  Environmental Biotechnology: Principles and Applications , 2000 .

[75]  B. Jørgensen,et al.  Community Size and Metabolic Rates of Psychrophilic Sulfate-Reducing Bacteria in Arctic Marine Sediments , 1999, Applied and Environmental Microbiology.

[76]  Aharon Oren,et al.  Bioenergetic Aspects of Halophilism , 1999, Microbiology and Molecular Biology Reviews.

[77]  B. Patel,et al.  Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. , 1998, International journal of systematic bacteriology.

[78]  A. Macario,et al.  Methanobacterium subterraneum sp. nov., a new alkaliphilic, eurythermic and halotolerant methanogen isolated from deep granitic groundwater. , 1998, International journal of systematic bacteriology.

[79]  H. Aldrich,et al.  Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. , 1997, International journal of systematic bacteriology.

[80]  K. Brandt,et al.  Desulfobacter halotolerans sp. nov., a Halotolerant Acetate-Oxidizing Sulfate-Reducing Bacterium Isolated from Sediments of Great Salt Lake, Utah , 1997 .

[81]  B. Schink Energetics of syntrophic cooperation in methanogenic degradation , 1997, Microbiology and molecular biology reviews : MMBR.

[82]  F. Rainey,et al.  Natroniella acetigena gen. nov. sp. nov., an Extremely Haloalkaliphilic, Homoacetic Bacterium: A New Member of Haloanaerobiales , 1996, Current Microbiology.

[83]  J. Imhoff,et al.  The phylogenetic relationship among Ectothiorhodospiraceae: a reevaluation of their taxonomy on the basis of 16S rDNA analyses , 1996, Archives of Microbiology.

[84]  Alfons J. M. Stams,et al.  Sulfate reduction in methanogenic bioreactors , 1994 .

[85]  J. García,et al.  Anaerobic bacteria from hypersaline environments. , 1994, Microbiological reviews.

[86]  J. Zeikus,et al.  Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. , 1993, Microbiological reviews.

[87]  K. Stetter,et al.  Stygiolobus azoricus gen. nov., sp. nov. Represents a Novel Genus of Anaerobic, Extremely Thermoacid , 1991 .

[88]  R. Conrad,et al.  Influence of temperature on energetics of hydrogen metabolism in homoacetogenic, methanogenic, and other anaerobic bacteria , 1990, Archives of Microbiology.

[89]  Jean-Louis Garcia Taxonomy and ecology of methanogens , 1990 .

[90]  R. Thauer Citric-acid cycle, 50 years on , 1988 .

[91]  J. Imhoff Reassignment of the Genus Ectothiorhodospira Pelsh 1936 to a New Family, Ectothiorhodospiraceae fam. nov., and Emended Description of the Chromatiaceae Bavendamm 1924 , 1984 .

[92]  R. Thauer,et al.  Energy conservation in chemotrophic anaerobic bacteria , 1977, Bacteriological reviews.

[93]  R. Thauer,et al.  Energy Conservation in Chemotrophic Anaerobic Bacteria , 1977, Bacteriological reviews.

[94]  A. Larimore,et al.  Energy conservation. , 1972, Science.

[95]  G. Muyzer,et al.  Diversity of RuBisCO and ATP citrate lyase genes in soda lake sediments. , 2011, FEMS microbiology ecology.

[96]  S. Sievert,et al.  Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. , 2011, Annual review of marine science.

[97]  C. Blodau,et al.  Energetic constraints on H2-dependent terminal electron accepting processes in anoxic environments: a review of observations and model approaches. , 2010, Environmental science & technology.

[98]  E. L H E I M A N N,et al.  Energetic Constraints on H 2-Dependent Terminal Electron Accepting Processes in Anoxic Environments : A Review of Observations and Model Approaches , 2009 .

[99]  K. Finster Anaerobic Bacteria and Archaea in Cold Ecosystems , 2008 .

[100]  S. Hattori Syntrophic acetate-oxidizing microbes in methanogenic environments. , 2008, Microbes and environments.

[101]  C. Vetriani,et al.  Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: evidence for two ways of citrate cleavage. , 2007, Environmental microbiology.

[102]  N. Glansdorff,et al.  Physiology and biochemistry of extremophiles. , 2007 .

[103]  J. Raymond The Evolution of Biological Carbon and Nitrogen Cycling—a Genomic Perspective , 2005 .

[104]  D. Canfield,et al.  Aquatic geomicrobiology. , 2005, Advances in marine biology.

[105]  D. Canfield,et al.  Systematics and Phylogeny , 2005 .

[106]  M. Madigan Anoxygenic phototrophic bacteria from extreme environments , 2004, Photosynthesis Research.

[107]  J. Seckbach Symbiosis: mechanisms and model systems. , 2002 .

[108]  David L. Valentine,et al.  Thermodynamic Ecology of Hydrogen-Based Syntrophy , 2001 .

[109]  B. Patel,et al.  Anaerobes from Extreme Environments , 2000 .

[110]  J. Seckbach Journey to Diverse Microbial Worlds , 2000, Cellular Origin and Life in Extreme Habitats.

[111]  I. Ansara,et al.  Thermodynamic Assessment of the , 1995 .

[112]  R. Thauer Citric-acid cycle, 50 years on. Modifications and an alternative pathway in anaerobic bacteria. , 1988, European journal of biochemistry.

[113]  S. Suzuki [Anaerobic bacteria]. , 1972, Nihon Ishikai zasshi. Journal of the Japan Medical Association.