Scaling dimensions from linearized tensor renormalization group transformations

We show a way to analyze a renormalization group (RG) fixed point in tensor space: write down the tensor RG equation, linearize it around a fixed-point tensor, and diagonalize the resulting linearized RG equation to obtain scaling dimensions. The tensor RG methods have had a great success in producing accurate free energy compared with the conventional real-space RG schemes. However, the above-mentioned canonical procedure for the fixed-point analysis has not been implemented for general tensor-network-based RG schemes. We extend the success of the tensor methods further to extraction of scaling dimensions through analyzing a fixed-point tensor. This approach is benchmarked in the context of the Ising models in 1D and 2D. The proposed method accomplishes the canonical RG prescription for the tensor RG methods.

[1]  Accurate exponents from approximate tensor renormalizations , 2012, 1211.3675.

[2]  Kenji Harada,et al.  Entanglement branching operator , 2017, 1710.01830.

[3]  Glen Evenbly,et al.  Gauge fixing, canonical forms, and optimal truncations in tensor networks with closed loops , 2018, Physical Review B.

[4]  Clement Delcamp,et al.  Renormalization of tensor networks using graph independent local truncations , 2017, 1709.07460.

[5]  J. Cardy Scaling and Renormalization in Statistical Physics by John Cardy , 1996 .

[6]  R. Pfeifer,et al.  Entanglement renormalization, scale invariance, and quantum criticality , 2008, 0810.0580.

[7]  Glen Evenbly,et al.  Algorithms for tensor network renormalization , 2015, 1509.07484.

[8]  M. Hinczewski,et al.  High-precision thermodynamic and critical properties from tensor renormalization-group flows. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Hiroshi Tomita,et al.  DOMAIN WALL RENORMALIZATION GROUP ANALYSIS OF TWO-DIMENSIONAL ISING MODEL , 2009, 1109.1377.

[10]  Guifre Vidal,et al.  Tensor network decompositions in the presence of a global symmetry , 2009, 0907.2994.

[11]  Joseph Polchinski,et al.  Scale and Conformal Invariance in Quantum Field Theory , 1988 .

[12]  G. Evenbly,et al.  Local Scale Transformations on the Lattice with Tensor Network Renormalization. , 2015, Physical review letters.

[13]  Yu Nakayama,et al.  Scale invariance vs conformal invariance , 2013, 1302.0884.

[14]  Tomotoshi Nishino,et al.  Doubling of Entanglement Spectrum in Tensor Renormalization Group , 2013, 1306.6829.

[15]  L. Kadanoff Variational Principles and Approximate Renormalization Group Calculations , 1975 .

[16]  C. Delcamp,et al.  Computing the renormalization group flow of two-dimensional ϕ4 theory with tensor networks , 2020, Physical Review Research.

[17]  Guifre Vidal,et al.  Tensor network states and algorithms in the presence of a global SU(2) symmetry , 2010, 1208.3919.

[18]  Z. Y. Xie,et al.  Renormalization of tensor-network states , 2010, 1002.1405.

[19]  M. Kardar Statistical physics of fields , 2007 .

[20]  L. Kadanoff Notes on Migdal's recursion formulas , 1976 .

[21]  Guifre Vidal,et al.  Tensor network states and algorithms in the presence of a global SU(2) symmetry , 2010, 1008.4774.

[22]  G. Vidal Entanglement renormalization. , 2005, Physical review letters.

[23]  Naoki Kawashima,et al.  Global optimization of tensor renormalization group using the corner transfer matrix , 2020, Physical Review B.

[24]  J. Cardy Operator Content of Two-Dimensional Conformally Invariant Theories , 1986 .

[25]  Z. Y. Xie,et al.  Second renormalization of tensor-network states. , 2008, Physical review letters.

[26]  A. Migdal,et al.  Recursion equations in gauge field theories , 1975 .

[27]  Xiao-Gang Wen,et al.  Tensor-Entanglement-Filtering Renormalization Approach and Symmetry Protected Topological Order , 2009, 0903.1069.

[28]  G. Vidal Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.

[29]  Michael E. Fisher,et al.  Critical Exponents in 3.99 Dimensions , 1972 .

[30]  J. V. Leeuwen,et al.  Wilson Theory for Spin Systems on a Triangular Lattice , 1973 .

[31]  G. Evenbly,et al.  Tensor Network Renormalization. , 2014, Physical review letters.

[32]  Leo P. Kadanoff,et al.  Real Space Renormalization in Statistical Mechanics , 2013, 1301.6323.

[33]  Synge Todo,et al.  Anisotropic tensor renormalization group , 2019, 1906.02007.

[34]  Simon Friederich,et al.  Functional renormalization for spontaneous symmetry breaking in the Hubbard model , 2010, 1012.5436.

[35]  Z. Y. Xie,et al.  Coarse-graining renormalization by higher-order singular value decomposition , 2012, 1201.1144.

[36]  Neil Genzlinger A. and Q , 2006 .

[37]  Hyun-Yong Lee,et al.  Tensor-Ring Decomposition with Index-Splitting , 2018, 1807.03862.

[38]  S Montangero,et al.  Quantum multiscale entanglement renormalization ansatz channels. , 2008, Physical review letters.

[39]  Axel Maas,et al.  On gauge fixing , 2010, 1010.5718.

[40]  Lei Wang,et al.  Differentiable Programming Tensor Networks , 2019, Physical Review X.

[41]  D. Kadoh,et al.  Renormalization group on a triad network , 2019, 1912.02414.

[42]  Ana Teresa C. Martins,et al.  On Minimal Models , 2007, Log. J. IGPL.

[43]  K. Wilson The renormalization group and critical phenomena , 1983 .

[44]  F. Verstraete,et al.  Renormalization Group Flows of Hamiltonians Using Tensor Networks. , 2017, Physical review letters.

[45]  Lexing Ying,et al.  Tensor Network Skeletonization , 2016, Multiscale Model. Simul..

[46]  J. Cardy Scaling and Renormalization in Statistical Physics , 1996 .

[47]  Shuo Yang,et al.  Loop Optimization for Tensor Network Renormalization. , 2015, Physical review letters.

[48]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[49]  L. Kadanoff Scaling laws for Ising models near T(c) , 1966 .

[50]  K. Wilson,et al.  Nonlinear renormalization groups , 1974 .

[51]  Pierre Mathieu,et al.  Conformal Field Theory , 1999 .

[52]  Michael Levin,et al.  Tensor renormalization group approach to two-dimensional classical lattice models. , 2006, Physical review letters.

[53]  G. Evenbly,et al.  Entanglement renormalization in two spatial dimensions. , 2008, Physical review letters.