Asymptotics for the Probability of Connectedness and the Distribution of Number of Components

Let $\rho _n$ be the fraction of structures of "size" $n$ which are "connected"; e.g., (a) the fraction of labeled or unlabeled $n$-vertex graphs having one component, (b) the fraction of partitions of $n$ or of an $n$-set having a single part or block, or (c) the fraction of $n$-vertex forests that contain only one tree. Various authors have considered $\lim \rho _n$, provided it exists. It is convenient to distinguish three cases depending on the nature of the power series for the structures: purely formal, convergent on the circle of convergence, and other. We determine all possible values for the pair $(\liminf \rho _{n},\;\limsup \rho _{n})$ in these cases. Only in the convergent case can one have $0

[1]  A. J. Stam,et al.  POLYNOMIALS OF BINOMIAL TYPE AND COMPOUND POISSON PROCESSES , 1988 .

[2]  E. M. Wright A Relationship between Two Sequences Iii , 1968 .

[3]  A. Zvonkin Matrix integrals and map enumeration: An accessible introduction , 1997 .

[4]  Kevin J. Compton,et al.  Some methods for computing component distribution probabilities in relational structures , 1987, Discret. Math..

[5]  Xavier Gourdon,et al.  Largest component in random combinatorial structures , 1998, Discret. Math..

[6]  E. M. Wright Asymptotic Relations Between Enumerative Functions in Graph Theory , 1970 .

[7]  E. Bender Asymptotic Methods in Enumeration , 1974 .

[8]  Stanley N. Burris,et al.  Spectrally determined first-order limit laws , 1995, Logic and Random Structures.

[9]  Arnold Knopfmacher,et al.  Arithmetical Semigroups Related to Trees and Polyhedra , 1999, J. Comb. Theory, Ser. A.

[10]  Jason P. Bell,et al.  When Structures Are Almost Surely Connected , 2000, Electron. J. Comb..

[11]  Hsien-Kuei Hwang,et al.  A Poisson * Geometric Convolution Law for the Number of Components in Unlabelled Combinatorial Structures , 1998, Combinatorics, Probability and Computing.

[12]  A. Odlyzko Periodic oscillations of coefficients of power series that satisfy functional equations , 1982 .

[13]  Edward A. Bender,et al.  Connectedness, Classes and Cycle Index , 1999, Combinatorics, Probability and Computing.

[14]  Frank Harary,et al.  Twenty-step algorithm for determining the asymptotic number of trees of various species: corrigenda , 1986, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[15]  W. Hayman A Generalisation of Stirling's Formula. , 1956 .

[16]  Walter Rudin,et al.  Limits of Ratios of Tails of Measures , 1973 .

[17]  A. Meir,et al.  The Asymptotic Behaviour of Coefficients of Powers of Certain Generating Functions , 1990, Eur. J. Comb..

[18]  Janet Simpson Beissinger,et al.  The Enumeration of Irreducible Combinatorial Objects , 1985, J. Comb. Theory A.

[19]  E. M. Wright A Relationship Between two Sequences , 1967 .

[20]  Peter J. Cameron On the probability of connectedness , 1997, Discret. Math..

[21]  Nicholas C. Wormald,et al.  Almost All Maps Are Asymmetric , 1995, J. Comb. Theory, Ser. B.

[22]  Stanley Burris,et al.  FINE SPECTRA AND LIMIT LAWS, II FIRST-ORDER 0-1 LAWS , 1997 .

[23]  Philippe Flajolet,et al.  Gaussian limiting distributions for the number of components in combinatorial structures , 1990, J. Comb. Theory, Ser. A.

[24]  Hans Jürgen Prömel,et al.  Counting unlabeled structures , 1987, J. Comb. Theory, Ser. A.