Complexity Theory for Discrete Black-Box Optimization Heuristics

A predominant topic in the theory of evolutionary algorithms and, more generally, theory of randomized black-box optimization techniques is running-time analysis. Running-time analysis is aimed at understanding the performance of a given heuristic on a given problem by bounding the number of function evaluations that are needed by the heuristic to identify a solution of a desired quality. As in general algorithms theory, this running-time perspective is most useful when it is complemented by a meaningful complexity theory that studies the limits of algorithmic solutions.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  Per Kristian Lehre,et al.  Unbiased Black-Box Complexity of Parallel Search , 2014, PPSN.

[3]  Dirk Sudholt,et al.  Crossover is provably essential for the Ising model on trees , 2005, GECCO '05.

[4]  Gerold Jäger,et al.  The number of pessimistic guesses in Generalized Black-peg Mastermind , 2011, Inf. Process. Lett..

[5]  Duc-Cuong Dang,et al.  Runtime Analysis of Non-elitist Populations: From Classical Optimisation to Partial Information , 2016, Algorithmica.

[6]  Benjamin Doerr,et al.  A Tight Runtime Analysis of the (1+(λ, λ)) Genetic Algorithm on OneMax , 2015, GECCO.

[7]  Benjamin Doerr,et al.  Playing Mastermind with Many Colors , 2013, SODA.

[8]  Thomas Jansen,et al.  On Easiest Functions for Mutation Operators in Bio-Inspired Optimisation , 2016, Algorithmica.

[9]  Benjamin Doerr,et al.  Optimal Parameter Choices Through Self-Adjustment: Applying the 1/5-th Rule in Discrete Settings , 2015, GECCO.

[10]  Benjamin Doerr,et al.  The unbiased black-box complexity of partition is polynomial , 2014, Artif. Intell..

[11]  Carsten Witt,et al.  Tight Bounds on the Optimization Time of a Randomized Search Heuristic on Linear Functions† , 2013, Combinatorics, Probability and Computing.

[12]  Benjamin Doerr,et al.  Too fast unbiased black-box algorithms , 2011, GECCO '11.

[13]  Benjamin Doerr,et al.  Runtime analysis of the (1 + (λ, λ)) genetic algorithm on random satisfiable 3-CNF formulas , 2017, GECCO.

[14]  Benjamin Doerr,et al.  Money for Nothing: Speeding Up Evolutionary Algorithms Through Better Initialization , 2015, GECCO.

[15]  Olivier Teytaud,et al.  Lower Bounds for Comparison Based Evolution Strategies Using VC-dimension and Sign Patterns , 2011, Algorithmica.

[16]  Benjamin Doerr,et al.  Crossover can provably be useful in evolutionary computation , 2008, GECCO '08.

[17]  H. S. Shapiro,et al.  A Combinatory Detection Problem , 1963 .

[18]  Maxim Buzdalov,et al.  Hard Test Generation for Maximum Flow Algorithms with the Fast Crossover-Based Evolutionary Algorithm , 2015, GECCO.

[19]  Benjamin Doerr,et al.  Memory-restricted black-box complexity of OneMax , 2012, Inf. Process. Lett..

[20]  Carola Doerr,et al.  The (1+1) Elitist Black-Box Complexity of LeadingOnes , 2016, GECCO.

[21]  Per Kristian Lehre,et al.  Black-box Complexity of Parallel Search with Distributed Populations , 2015, FOGA.

[22]  Zhixiang Chen,et al.  Finding a Hidden Code by Asking Questions , 1996, COCOON.

[23]  Benjamin Doerr,et al.  Black-box complexity: from complexity theory to playing mastermind , 2013, GECCO.

[24]  Thomas Jansen,et al.  UNIVERSITY OF DORTMUND REIHE COMPUTATIONAL INTELLIGENCE COLLABORATIVE RESEARCH CENTER 531 Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods Upper and Lower Bounds for Randomized Search Heuristics in Black-Box Optimization , 2004 .

[25]  Benjamin Doerr,et al.  Improved analysis methods for crossover-based algorithms , 2009, GECCO.

[26]  Thomas Jansen,et al.  Analysis of an Asymmetric Mutation Operator , 2010, Evolutionary Computation.

[27]  W. H. Mills,et al.  Determination of a Subset from Certain Combinatorial Properties , 1966, Canadian Journal of Mathematics.

[28]  Benjamin Doerr,et al.  Black-Box Complexity: Breaking the O(n logn) Barrier of LeadingOnes , 2011, Artificial Evolution.

[29]  William F. Punch,et al.  Fast and Efficient Black Box Optimization Using the Parameter-less Population Pyramid , 2015, Evolutionary Computation.

[30]  Benjamin Doerr,et al.  Ranking-Based Black-Box Complexity , 2011, Algorithmica.

[31]  Benjamin Doerr,et al.  Reducing the arity in unbiased black-box complexity , 2014, Theor. Comput. Sci..

[32]  Tobias Storch,et al.  Black-box complexity: Advantages of memory usage , 2016, Inf. Process. Lett..

[33]  Carola Doerr,et al.  Elitist Black-Box Models: Analyzing the Impact of Elitist Selection on the Performance of Evolutionary Algorithms , 2015, GECCO.

[34]  Michael T. Goodrich,et al.  On the algorithmic complexity of the Mastermind game with black-peg results , 2009, Inf. Process. Lett..

[35]  Per Kristian Lehre,et al.  Non-uniform mutation rates for problems with unknown solution lengths , 2011, FOGA '11.

[36]  Benjamin Doerr,et al.  From black-box complexity to designing new genetic algorithms , 2015, Theor. Comput. Sci..

[37]  Frank Neumann,et al.  More effective crossover operators for the all-pairs shortest path problem , 2013, Theor. Comput. Sci..

[38]  Thomas Jansen,et al.  Performance analysis of randomised search heuristics operating with a fixed budget , 2014, Theor. Comput. Sci..

[39]  Frank Neumann,et al.  Design and Management of Complex Technical Processes and Systems by Means of Computational Intelligence Methods Runtime Analysis of a Simple Ant Colony Optimization Algorithm Runtime Analysis of a Simple Ant Colony Optimization Algorithm , 2022 .

[40]  Duc-Cuong Dang,et al.  Escaping Local Optima with Diversity Mechanisms and Crossover , 2016, GECCO.

[41]  Ingo Wegener,et al.  The Ising Model on the Ring: Mutation Versus Recombination , 2004, GECCO.

[42]  Benjamin Doerr,et al.  The Impact of Random Initialization on the Runtime of Randomized Search Heuristics , 2015, Algorithmica.

[43]  Dirk Sudholt,et al.  A New Method for Lower Bounds on the Running Time of Evolutionary Algorithms , 2011, IEEE Transactions on Evolutionary Computation.

[44]  Nader H. Bshouty,et al.  Optimal Algorithms for the Coin Weighing Problem with a Spring Scale , 2009, COLT.

[45]  D. Knuth The Computer as Master Mind , 1977 .

[46]  Thomas Jansen,et al.  A method to derive fixed budget results from expected optimisation times , 2013, GECCO '13.

[47]  Olivier Teytaud,et al.  General Lower Bounds for Evolutionary Algorithms , 2006, PPSN.

[48]  R. Paul Wiegand,et al.  Black-box search by elimination of fitness functions , 2009, FOGA '09.

[49]  Per Kristian Lehre,et al.  Escaping Local Optima Using Crossover With Emergent Diversity , 2018, IEEE Transactions on Evolutionary Computation.

[50]  Kurt Mehlhorn,et al.  The Query Complexity of Finding a Hidden Permutation , 2013, Space-Efficient Data Structures, Streams, and Algorithms.

[51]  Maxim Buzdalov An Algorithm for Computing Lower Bounds for Unrestricted Black-Box Complexities , 2016, GECCO.

[52]  Carola Doerr,et al.  Introducing Elitist Black-Box Models: When Does Elitist Behavior Weaken the Performance of Evolutionary Algorithms? , 2015, Evolutionary Computation.

[53]  Benjamin Doerr,et al.  Optimal Static and Self-Adjusting Parameter Choices for the (1+(λ,λ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( , 2017, Algorithmica.

[54]  Frank Neumann,et al.  Bioinspired computation in combinatorial optimization: algorithms and their computational complexity , 2012, GECCO '12.

[55]  Dirk Sudholt,et al.  Analysis of speedups in parallel evolutionary algorithms and (1+λ) EAs for combinatorial optimization , 2014, Theor. Comput. Sci..

[56]  Thomas Jansen,et al.  The Analysis of Evolutionary Algorithms—A Proof That Crossover Really Can Help , 2002, Algorithmica.

[57]  Benjamin Doerr,et al.  Playing Mastermind with Constant-Size Memory , 2012, Theory of Computing Systems.

[58]  Andrew Chi-Chih Yao,et al.  Probabilistic computations: Toward a unified measure of complexity , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[59]  Benjamin Doerr,et al.  Black-box complexities of combinatorial problems , 2013, Theor. Comput. Sci..

[60]  Per Kristian Lehre,et al.  Faster black-box algorithms through higher arity operators , 2010, FOGA '11.

[61]  Thomas Jansen,et al.  Black-Box Complexity for Bounding the Performance of Randomized Search Heuristics , 2014, Theory and Principled Methods for the Design of Metaheuristics.

[62]  Benjamin Doerr,et al.  Fast genetic algorithms , 2017, GECCO.

[63]  Thomas Stützle,et al.  Ant Colony Optimization Theory , 2004 .

[64]  Dirk Sudholt,et al.  Towards a Runtime Comparison of Natural and Artificial Evolution , 2015, Algorithmica.

[65]  Thomas Jansen,et al.  On the Black-Box Complexity of Example Functions: The Real Jump Function , 2015, FOGA.

[66]  Michael D. Vose,et al.  Unbiased black box search algorithms , 2011, GECCO '11.

[67]  Benjamin Doerr,et al.  Unbiased Black-Box Complexities of Jump Functions , 2014, Evolutionary Computation.

[68]  Thomas Jansen,et al.  On the analysis of the (1+1) evolutionary algorithm , 2002, Theor. Comput. Sci..

[69]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[70]  Mahmoud Fouz,et al.  Quasirandom evolutionary algorithms , 2010, GECCO '10.

[71]  Dirk Sudholt,et al.  Crossover speeds up building-block assembly , 2012, GECCO '12.

[72]  Benjamin Doerr,et al.  k-Bit Mutation with Self-Adjusting k Outperforms Standard Bit Mutation , 2016, PPSN.

[73]  Benjamin Doerr,et al.  Optimal Parameter Settings for the (1 + λ, λ) Genetic Algorithm , 2016, GECCO.

[74]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[75]  B. Lindström On a Combinatorial Problem in Number Theory , 1965, Canadian Mathematical Bulletin.

[76]  Benjamin Doerr,et al.  The unrestricted black-box complexity of jump functions , 2017, GECCO.

[77]  Carola Doerr,et al.  OneMax in Black-Box Models with Several Restrictions , 2015, Algorithmica.

[78]  Dirk Sudholt,et al.  Simple max-min ant systems and the optimization of linear pseudo-boolean functions , 2010, FOGA '11.