Maximum likelihood estimation in processes of Ornstein-Uhlenbeck type

In this article we propose a maximum likelihood methodology to estimate the parameters of a one-dimensional stationary process of Ornstein-Uhlenbeck type that is constructed via a self-decomposable distribution D. Our approach is based on the inversion of the characteristic function and the use of the classical or fractional discrete fast Fourier transform. The results are illustrated throughout an extensive simulation study. This includes the cases where D belongs to the gamma, tempered stable and normal inverse Gaussian family of distributions.

[1]  W. R. Schucany,et al.  Generating Random Variates Using Transformations with Multiple Roots , 1976 .

[2]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[3]  J. Rosínski Tempering stable processes , 2007 .

[4]  A. V. D. Vaart,et al.  Nonparametric inference for Lévy-driven Ornstein-Uhlenbeck processes , 2005 .

[5]  David H. Bailey,et al.  The Fractional Fourier Transform and Applications , 1991, SIAM Rev..

[6]  C. Halgreen Self-decomposability of the generalized inverse Gaussian and hyperbolic distributions , 1979 .

[7]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[8]  W. Schoutens,et al.  Jumps in Intensity Models , 2006 .

[9]  PARAMETER ESTIMATION FOR A DISCRETELY OBSERVED STOCHASTIC VOLATILITY MODEL WITH JUMPS IN THE VOLATILITY , 2003 .

[10]  K. Prause The Generalized Hyperbolic Model: Estimation, Financial Derivatives, and Risk Measures , 1999 .

[11]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[12]  P. Protter Stochastic integration and differential equations , 1990 .

[13]  S. Raible,et al.  Lévy Processes in Finance: Theory, Numerics, and Empirical Facts , 2000 .

[14]  A. Kyprianou Introductory Lectures on Fluctuations of Lévy Processes with Applications , 2006 .

[15]  N. Shephard,et al.  Normal Modified Stable Processes , 2001 .

[16]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[17]  W. Schoutens Lévy Processes in Finance: Pricing Financial Derivatives , 2003 .

[18]  Makoto Yamazato,et al.  Unimodality of Infinitely Divisible Distribution Functions of Class $L$ , 1978 .

[19]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .