A hybrid chaos-based pseudo-random bit generator in VHDL-AMS

A new pseudo-random bit generator with an increased level of security and possible resistance to hacker attacks is presented. The generator is based on hybrid (analog and digital) chaotic systems. We also use the VHDL-AMS language in modeling of both the chaotic systems and generator. The 0/1 test for chaos is applied to evaluate the generator's performance.

[1]  Johan A. K. Suykens,et al.  True random bit generation from a double-scroll attractor , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  S. Li,et al.  Breaking an encryption scheme based on chaotic baker map , 2004, Physics Letters.

[3]  Sirma Yavuz,et al.  Security problems for a pseudorandom sequence generator based on the Chen chaotic system , 2013, Comput. Phys. Commun..

[4]  R. Povinelli,et al.  Analyzing Logistic Map Pseudorandom Number Generators for Periodicity Induced by Finite Precision Floating-Point Representation , 2012 .

[5]  Camel Tanougast,et al.  Synchronized hybrid chaotic generators: Application to real-time wireless speech encryption , 2013, Commun. Nonlinear Sci. Numer. Simul..

[6]  Wieslaw Marszalek,et al.  Mixed-mode oscillations and chaotic solutions of jerk (Newtonian) equations , 2014, J. Comput. Appl. Math..

[7]  François Pêcheux,et al.  VHDL-AMS and Verilog-AMS as alternative hardware description languages for efficient modeling of multidiscipline systems , 2005, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[8]  Wieslaw Marszalek Circuits with Oscillatory Hierarchical Farey Sequences and Fractal Properties , 2012, Circuits Syst. Signal Process..

[9]  A. Kanso,et al.  Logistic chaotic maps for binary numbers generations , 2009 .

[10]  Wieslaw Marszalek,et al.  Circuits with mixed mode oscillations in VHDL-AMS , 2013, 2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS).

[11]  Wieslaw Marszalek,et al.  Mixed-Mode Oscillations in a Modified Chua’s Circuit , 2010, Circuits Syst. Signal Process..

[12]  Georg A. Gottwald,et al.  On the Implementation of the 0-1 Test for Chaos , 2009, SIAM J. Appl. Dyn. Syst..