Metal–Organic Framework Derived Carbon Nanotube Grafted Cobalt/Carbon Polyhedra Grown on Nickel Foam: An Efficient 3D Electrode for Full Water Splitting

The growth of metal–organic framework (ZIF-67) nanocrystals on nickel foam (NF), followed by carbonization in diluted H2, leads to a nitrogen-doped carbon-nanotube-grafted cobalt/carbon polyhedra film on NF. The obtained material serves as a highly active binder-free electrocatalyst for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER), enabling high-performance alkaline (0.1 m KOH) water electrolysis with potentials of 1.62 and 0.24 V, respectively, at OER and HER current densities of 10 mA cm−2.

[1]  W. Schuhmann,et al.  Co@Co3O4 Encapsulated in Carbon Nanotube-Grafted Nitrogen-Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode. , 2016, Angewandte Chemie.

[2]  W. Schuhmann,et al.  Bifunktionale Sauerstoffelektroden durch Einbettung von Co@Co3O4-Nanopartikeln in CNT-gekoppelte Stickstoff-dotierte Kohlenstoffpolyeder , 2016 .

[3]  S. Gul,et al.  High-Performance Overall Water Splitting Electrocatalysts Derived from Cobalt-Based Metal–Organic Frameworks , 2015 .

[4]  H. Dai,et al.  Blending Cr2O3 into a NiO-Ni electrocatalyst for sustained water splitting. , 2015, Angewandte Chemie.

[5]  Tatsuya Shinagawa,et al.  Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion , 2015, Scientific Reports.

[6]  Wei Xing,et al.  NiSe Nanowire Film Supported on Nickel Foam: An Efficient and Stable 3D Bifunctional Electrode for Full Water Splitting. , 2015, Angewandte Chemie.

[7]  Xiaoxin Zou,et al.  Noble metal-free hydrogen evolution catalysts for water splitting. , 2015, Chemical Society reviews.

[8]  Wei Xia,et al.  Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion , 2015 .

[9]  Yong Wang,et al.  In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. , 2015, Journal of the American Chemical Society.

[10]  A. Matzger,et al.  Water sensitivity in Zn4O-based MOFs is structure and history dependent. , 2015, Journal of the American Chemical Society.

[11]  Jian Liu,et al.  Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. , 2015, Journal of the American Chemical Society.

[12]  Dorina F. Sava,et al.  Zeolite-like metal-organic frameworks (ZMOFs): design, synthesis, and properties. , 2015, Chemical Society reviews.

[13]  Mohammad Khaja Nazeeruddin,et al.  Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts , 2014, Science.

[14]  Mietek Jaroniec,et al.  Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. , 2014, Journal of the American Chemical Society.

[15]  W. Schuhmann,et al.  Mn(x)O(y)/NC and Co(x)O(y)/NC nanoparticles embedded in a nitrogen-doped carbon matrix for high-performance bifunctional oxygen electrodes. , 2014, Angewandte Chemie.

[16]  W. Schuhmann,et al.  Eine Stickstoff‐dotierte Kohlenstoffmatrix mit eingeschlossenen MnxOy/NC‐ und CoxOy/NC‐Nanopartikeln für leistungsfähige bifunktionale Sauerstoffelektroden , 2014 .

[17]  S. Joo,et al.  A transformative route to nanoporous manganese oxides of controlled oxidation states with identical textural properties , 2014 .

[18]  M. Willinger,et al.  Spinel Mn-Co oxide in N-doped carbon nanotubes as a bifunctional electrocatalyst synthesized by oxidative cutting. , 2014, Journal of the American Chemical Society.

[19]  H. Shin,et al.  Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. , 2013, Angewandte Chemie.

[20]  K. Loh,et al.  A Graphene Oxide and Copper‐Centered Metal Organic Framework Composite as a Tri‐Functional Catalyst for HER, OER, and ORR , 2013 .

[21]  James R. McKone,et al.  Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. , 2013, Journal of the American Chemical Society.

[22]  Xin-bo Zhang,et al.  An efficient three-dimensional oxygen evolution electrode. , 2013, Angewandte Chemie.

[23]  D. Stolten,et al.  A comprehensive review on PEM water electrolysis , 2013 .

[24]  P. K. Bharadwaj,et al.  High proton conductivity by a metal-organic framework incorporating Zn8O clusters with aligned imidazolium groups decorating the channels. , 2012, Journal of the American Chemical Society.

[25]  Kimoon Kim,et al.  Porous carbon materials with a controllable surface area synthesized from metal-organic frameworks. , 2012, Chemical communications.

[26]  K. Ariga,et al.  Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. , 2012, Chemical communications.

[27]  Maria Chan,et al.  Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. , 2012, Nature materials.

[28]  Shyam Biswas,et al.  Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. , 2012, Chemical reviews.

[29]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[30]  Ann V. Call,et al.  Cobalt imidazolate framework as precursor for oxygen reduction reaction electrocatalysts. , 2011, Chemistry.

[31]  M. Allendorf,et al.  Metal‐Organic Frameworks: A Rapidly Growing Class of Versatile Nanoporous Materials , 2011, Advanced materials.

[32]  E. Aydil,et al.  Effect of hydrogen on catalyst nanoparticles in carbon nanotube growth , 2010 .

[33]  T. Akita,et al.  Metal-organic framework as a template for porous carbon synthesis. , 2008, Journal of the American Chemical Society.

[34]  S. Kitagawa,et al.  Funktionale poröse Koordinationspolymere , 2004 .

[35]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[36]  Markus Antonietti,et al.  Highly Porous Materials as Tunable Electrocatalysts for the Hydrogen and Oxygen Evolution Reaction , 2015 .