2'-N-Alkylaminocarbonyl-2'-amino-LNA: Synthesis, duplex stability, nuclease Resistance, and in vitro anti-MicroRNA activity.

[1]  S. Obika,et al.  Parallel synthesis of oligonucleotides containing N-acyl amino-LNA and their therapeutic effects as anti-microRNAs. , 2022, Organic & biomolecular chemistry.

[2]  S. Obika,et al.  Structure-Activity Relationships of Anti-microRNA Oligonucleotides Containing Cationic Guanidine-Modified Nucleic Acids. , 2022, Journal of medicinal chemistry.

[3]  R. Langer,et al.  Advances in oligonucleotide drug delivery , 2020, Nature Reviews Drug Discovery.

[4]  T. P. Prakash,et al.  Mechanisms of palmitic acid-conjugated antisense oligonucleotide distribution in mice , 2020, Nucleic acids research.

[5]  Y. Hari,et al.  Synthesis of Oligonucleotides Containing 2′-N-alkylaminocarbonyl-2′-amino-LNA (2′-urea-LNA) Moieties Using Post-Synthetic Modification Strategy , 2020, Molecules.

[6]  Richard G. Lee,et al.  Fatty acid conjugation enhances potency of antisense oligonucleotides in muscle , 2019, Nucleic acids research.

[7]  C. Ämmälä,et al.  Targeted delivery of antisense oligonucleotides to pancreatic β-cells , 2018, Science Advances.

[8]  S. Obika,et al.  Synthetic Method for 2'-Amino-LNA Bearing Any of the Four Nucleobases via a Transglycosylation Reaction. , 2018, Organic letters.

[9]  J. Wengel,et al.  Synergy of Two Highly Specific Biomolecular Recognition Events: Aligning an AT-Hook Peptide in DNA Minor Grooves via Covalent Conjugation to 2'-Amino-LNA. , 2018, Bioconjugate chemistry.

[10]  J. Kjems,et al.  Fatty Acid-Modified Gapmer Antisense Oligonucleotide and Serum Albumin Constructs for Pharmacokinetic Modulation. , 2017, Molecular therapy : the journal of the American Society of Gene Therapy.

[11]  R. Kumar,et al.  Synthesis and Excellent Duplex Stability of Oligonucleotides Containing 2′-Amino-LNA Functionalized with Galactose Units , 2017, Molecules.

[12]  J. Wengel,et al.  Oligonucleotides Containing Aminated 2'-Amino-LNA Nucleotides: Synthesis and Strong Binding to Complementary DNA and RNA. , 2017, Bioconjugate chemistry.

[13]  anastasia. khvorova,et al.  The chemical evolution of oligonucleotide therapies of clinical utility , 2017, Nature Biotechnology.

[14]  K. E. Lundin,et al.  CTG repeat-targeting oligonucleotides for down-regulating Huntingtin expression , 2017, Nucleic acids research.

[15]  P. T. Jørgensen,et al.  Synthesis and Biophysical Investigations of Oligonucleotides Containing Galactose-Modified DNA, LNA, and 2'-Amino-LNA Monomers. , 2016, The Journal of organic chemistry.

[16]  P. Seth,et al.  The Medicinal Chemistry of Therapeutic Oligonucleotides. , 2016, Journal of medicinal chemistry.

[17]  K. E. Lundin,et al.  Next-generation bis-locked nucleic acids with stacking linker and 2′-glycylamino-LNA show enhanced DNA invasion into supercoiled duplexes , 2016, Nucleic acids research.

[18]  M. Behlke,et al.  Oligonucleotide Therapies: The Past and the Present , 2015, Human gene therapy.

[19]  J. Wengel,et al.  Oligonucleotides containing a piperazino-modified 2'-amino-LNA monomer exhibit very high duplex stability and remarkable nuclease resistance. , 2015, Chemical communications.

[20]  H. Liljenbäck,et al.  Synthesis of multi-galactose-conjugated 2'-O-methyl oligoribonucleotides and their in vivo imaging with positron emission tomography. , 2014, Bioorganic & medicinal chemistry.

[21]  Amy Chan,et al.  Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. , 2014, Journal of the American Chemical Society.

[22]  R. Månsson,et al.  Splice-correcting oligonucleotides restore BTK function in X-linked agammaglobulinemia model. , 2014, The Journal of clinical investigation.

[23]  Zhonghan Li,et al.  Therapeutic targeting of microRNAs: current status and future challenges , 2014, Nature Reviews Drug Discovery.

[24]  D. G. Zisoulis,et al.  Anti-miRs Competitively Inhibit microRNAs in Argonaute Complexes , 2014, PloS one.

[25]  J. Wengel,et al.  Scaffolding along nucleic acid duplexes using 2'-amino-locked nucleic acids. , 2014, Accounts of chemical research.

[26]  J. Wengel,et al.  "Clickable" LNA/DNA probes for fluorescence sensing of nucleic acids and autoimmune antibodies. , 2013, Chemical communications.

[27]  L. H. Hansen,et al.  Peptide-LNA oligonucleotide conjugates. , 2013, Organic & biomolecular chemistry.

[28]  J. Wengel,et al.  Large scale synthesis of 2'-amino-LNA thymine and 5-methylcytosine nucleosides. , 2012, The Journal of organic chemistry.

[29]  G. Deleavey,et al.  Designing chemically modified oligonucleotides for targeted gene silencing. , 2012, Chemistry & biology.

[30]  A. Krainer,et al.  RNA therapeutics: beyond RNA interference and antisense oligonucleotides , 2012, Nature Reviews Drug Discovery.

[31]  M. Behlke,et al.  Chemical modification and design of anti-miRNA oligonucleotides , 2011, Gene Therapy.

[32]  T. Thum,et al.  Regulation and function of miRNA-21 in health and disease , 2011, RNA biology.

[33]  Satoshi Obika,et al.  Antisense drug discovery and development. , 2011, Future medicinal chemistry.

[34]  J. Wengel,et al.  Amino acids attached to 2'-amino-LNA: synthesis and excellent duplex stability. , 2011, Organic & biomolecular chemistry.

[35]  K. E. Lundin,et al.  Optimizing anti-gene oligonucleotide ‘Zorro-LNA’ for improved strand invasion into duplex DNA , 2010, Nucleic acids research.

[36]  J. Wengel,et al.  Aptamers as a model for functional evaluation of LNA and 2'-amino LNA. , 2009, Bioorganic & medicinal chemistry letters.

[37]  J. Wengel,et al.  Functionalization of 2'-amino-LNA with additional nucleobases. , 2009, Organic & biomolecular chemistry.

[38]  I. V. Astakhova,et al.  Perylene attached to 2'-amino-LNA: synthesis, incorporation into oligonucleotides, and remarkable fluorescence properties in vitro and in cell culture. , 2008, Bioconjugate chemistry.

[39]  J. Stenvang,et al.  The utility of LNA in microRNA-based cancer diagnostics and therapeutics. , 2008, Seminars in cancer biology.

[40]  J. Wengel,et al.  Multilabeled pyrene-functionalized 2'-amino-LNA probes for nucleic acid detection in homogeneous fluorescence assays. , 2005, Journal of the American Chemical Society.

[41]  J. Wengel,et al.  Optimized DNA targeting using N,N-bis(2-pyridylmethyl)-β-alanyl 2′-amino-LNA , 2005 .

[42]  J. Wengel,et al.  LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. , 2004, Biochemistry.

[43]  J. Wengel,et al.  Interstrand communication between 2'-N-(pyren-1-yl)methyl-2'-amino-LNA monomers in nucleic acid duplexes: directional control and signalling of full complementarity. , 2004, Chemical communications.

[44]  J. Wengel,et al.  Functionalized LNA (locked nucleic acid): high-affinity hybridization of oligonucleotides containing N-acylated and N-alkylated 2'-amino-LNA monomers. , 2003, Chemical communications.

[45]  V. Erdmann,et al.  Design of antisense oligonucleotides stabilized by locked nucleic acids. , 2002, Nucleic acids research.

[46]  J. Wengel,et al.  Synthesis of 2‘-Amino-LNA: A Novel Conformationally Restricted High-Affinity Oligonucleotide Analogue with a Handle , 1998 .

[47]  Y. Hari,et al.  Stability and structural features of the duplexes containing nucleoside analogues with a fixed N-type conformation, 2'-O,4'- C-methyleneribonucleosides , 1998 .

[48]  D. Corey,et al.  Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. , 2001, Chemistry & biology.

[49]  Poul Nielsen,et al.  LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition , 1998 .