Constructions of Mutually Unbiased Bases
暂无分享,去创建一个
[1] William O. Alltop,et al. Complex sequences with low periodic correlations , 1980 .
[2] Howard Barnum,et al. Information-disturbance tradeoff in quantum measurement on the uniform ensemble , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).
[3] P. Oscar Boykin,et al. A New Proof for the Existence of Mutually Unbiased Bases , 2002, Algorithmica.
[4] Harald Niederreiter,et al. Introduction to finite fields and their applications: List of Symbols , 1986 .
[5] C. Carlet. One-weight Z4-linear Codes , 2000 .
[6] Arthur O. Pittenger,et al. Mutually Unbiased Bases, Generalized Spin Matrices and Separability , 2003 .
[7] Christian Kurtsiefer,et al. Ascertaining the Values of σx, σy, and σz of a Polarization Qubit , 2003 .
[8] P. K. Aravind. Solution to the King’s Problem in Prime Power Dimensions , 2002 .
[9] T. Helleseth,et al. On the weight hierarchy of Kerdock codes over Z4 , 1996, IEEE Trans. Inf. Theory.
[10] Zhe-Xian X. Wan,et al. Quaternary Codes , 1997 .
[11] I. D. Ivonovic. Geometrical description of quantal state determination , 1981 .
[12] Vaidman,et al. How to ascertain the values of sigmax, sigma y, and sigma z of a spin-1/2 particle. , 1987, Physical review letters.
[13] P. K. Aravind. Best Conventional Solutions to the King’s Problem , 2003 .
[14] J. Schwinger. UNITARY OPERATOR BASES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.
[15] S. Chaturvedi,et al. Aspects of mutually unbiased bases in odd-prime-power dimensions , 2001, quant-ph/0109003.
[16] S. G. Hoggar,et al. t-Designs in Projective Spaces , 1982, Eur. J. Comb..
[17] Richard M. Wilson,et al. Concerning the number of mutually orthogonal latin squares , 1974, Discret. Math..
[18] Berthold-Georg Englert,et al. The Mean King's Problem: Spin , 2001, quant-ph/0101065.
[19] H. Bechmann-Pasquinucci,et al. Quantum Cryptography using larger alphabets , 1999, quant-ph/9910095.
[20] Y. Aharonov,et al. The mean king's problem: Prime degrees of freedom , 2001, quant-ph/0101134.
[21] J. Seidel,et al. BOUNDS FOR SYSTEMS OF LINES, AND JACOBI POLYNOMIALS , 1975 .
[22] G. Mullen,et al. Discrete Mathematics Using Latin Squares , 1998, The Mathematical Gazette.
[23] William O. Alltop,et al. Complex sequences with low periodic correlations (Corresp.) , 1980, IEEE Trans. Inf. Theory.
[24] C. Archer. There is no generalization of known formulas for mutually unbiased bases , 2003, quant-ph/0312204.
[25] Paul Erdös,et al. On the Maximal Number of Pairwise Orthogonal Latin Squares of a Given Order , 1960, Canadian Journal of Mathematics.
[26] W. Wootters,et al. Optimal state-determination by mutually unbiased measurements , 1989 .