A simple differential evolution with time-varying strategy for continuous optimization

We propose a novel simple variant of differential evolution (DE) algorithm and call it TVDE because it is a time-varying strategy-based DE algorithm. In our TVDE, three functions with time-varying characteristics are applied to create a new mutation operator and automatically tune the values of two key control parameters (scaling factor and crossover rate) during the evolutionary process. To verify its availability, the proposed TVDE has been tested on the CEC 2014 benchmark sets and four real-life problems and compared to seven state-of-the-art DE variants. The experimental results indicate that the proposed TVDE algorithm obtains the best overall performance among the eight DE algorithms.

[1]  Ponnuthurai N. Suganthan,et al.  Recent advances in differential evolution - An updated survey , 2016, Swarm Evol. Comput..

[2]  Lixin Tang,et al.  Differential Evolution With an Individual-Dependent Mechanism , 2015, IEEE Transactions on Evolutionary Computation.

[3]  Gui-Jun Zhang,et al.  Differential Evolution With Underestimation-Based Multimutation Strategy , 2019, IEEE Transactions on Cybernetics.

[4]  Tao Zhu,et al.  Learning enhanced differential evolution for tracking optimal decisions in dynamic power systems , 2017, Appl. Soft Comput..

[5]  Swagatam Das,et al.  Modified Differential Evolution with Locality induced Genetic Operators for dynamic optimization , 2016, Eur. J. Oper. Res..

[6]  Carlos García-Martínez,et al.  Global and local real-coded genetic algorithms based on parent-centric crossover operators , 2008, Eur. J. Oper. Res..

[7]  Dong Zhou,et al.  Translation techniques in cross-language information retrieval , 2012, CSUR.

[8]  Ruiqing Zhao,et al.  Differential evolution with individual-dependent and dynamic parameter adjustment , 2017, Soft Computing.

[9]  Ali Wagdy Mohamed,et al.  Constrained optimization based on modified differential evolution algorithm , 2012, Inf. Sci..

[10]  Hussein A. Abbass,et al.  Adaptive Cross-Generation Differential Evolution Operators for Multiobjective Optimization , 2016, IEEE Transactions on Evolutionary Computation.

[11]  Wenyin Gong,et al.  Adaptive Ranking Mutation Operator Based Differential Evolution for Constrained Optimization , 2015, IEEE Transactions on Cybernetics.

[12]  Bai Yang,et al.  An adaptive differential evolution with combined strategy for global numerical optimization , 2020, Soft Comput..

[13]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[14]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[15]  Amer Draa,et al.  A Compound Sinusoidal Differential Evolution algorithm for continuous optimization , 2019, Swarm Evol. Comput..

[16]  Wenyin Gong,et al.  Differential Evolution With Ranking-Based Mutation Operators , 2013, IEEE Transactions on Cybernetics.

[17]  Ponnuthurai Nagaratnam Suganthan,et al.  Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization , 2014 .

[18]  Xuefeng Yan,et al.  Self-Adaptive Differential Evolution Algorithm With Zoning Evolution of Control Parameters and Adaptive Mutation Strategies , 2016, IEEE Transactions on Cybernetics.

[19]  Anas A. Hadi,et al.  Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization , 2019, Swarm Evol. Comput..

[20]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[21]  Francisco Herrera,et al.  Gradual distributed real-coded genetic algorithms , 2000, IEEE Trans. Evol. Comput..

[22]  Tapabrata Ray,et al.  Differential Evolution With Dynamic Parameters Selection for Optimization Problems , 2014, IEEE Transactions on Evolutionary Computation.

[23]  Peng Guo,et al.  Flexible capacity planning for engineering systems based on decision rules and differential evolution , 2018, Comput. Ind. Eng..

[24]  Juan Humberto Sossa Azuela,et al.  Differential evolution training algorithm for dendrite morphological neural networks , 2018, Appl. Soft Comput..

[25]  Marjan Mernik,et al.  Exploration and exploitation in evolutionary algorithms: A survey , 2013, CSUR.

[26]  Ponnuthurai N. Suganthan,et al.  An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[27]  Jing J. Liang,et al.  Multimodal multiobjective optimization with differential evolution , 2019, Swarm Evol. Comput..

[28]  Karol R. Opara,et al.  Comparison of mutation strategies in Differential Evolution - A probabilistic perspective , 2018, Swarm Evol. Comput..

[29]  Liang Gao,et al.  Engineering design optimization using an improved local search based epsilon differential evolution algorithm , 2018, J. Intell. Manuf..

[30]  Rawaa Dawoud Al-Dabbagh,et al.  Algorithmic design issues in adaptive differential evolution schemes: Review and taxonomy , 2018, Swarm Evol. Comput..

[31]  Hui Wang,et al.  Gaussian Bare-Bones Differential Evolution , 2013, IEEE Transactions on Cybernetics.

[32]  Amer Draa,et al.  A sinusoidal differential evolution algorithm for numerical optimisation , 2015, Appl. Soft Comput..

[33]  Chin-Teng Lin,et al.  Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems , 2012, Applied Intelligence.

[34]  Ruiqing Zhao,et al.  Differential evolution with Gaussian mutation and dynamic parameter adjustment , 2017, Soft Computing.

[35]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[36]  Meie Shen,et al.  Differential Evolution With Two-Level Parameter Adaptation , 2014, IEEE Transactions on Cybernetics.