Biological and Structural Analyses of New Potent Allosteric Inhibitors of HIV-1 Integrase

HIV-1 integrase-LEDGF allosteric inhibitors (INLAIs) share the binding site on the viral protein with the host factor LEDGF/p75. These small molecules act as molecular glues promoting hyper-multimerization of HIV-1 IN protein to severely perturb maturation of viral particles. ABSTRACT HIV-1 integrase-LEDGF allosteric inhibitors (INLAIs) share the binding site on the viral protein with the host factor LEDGF/p75. These small molecules act as molecular glues promoting hyper-multimerization of HIV-1 IN protein to severely perturb maturation of viral particles. Herein, we describe a new series of INLAIs based on a benzene scaffold that display antiviral activity in the single digit nanomolar range. Akin to other compounds of this class, the INLAIs predominantly inhibit the late stages of HIV-1 replication. A series of high-resolution crystal structures revealed how these small molecules engage the catalytic core and the C-terminal domains of HIV-1 IN. No antagonism was observed between our lead INLAI compound BDM-2 and a panel of 16 clinical antiretrovirals. Moreover, we show that compounds retained high antiviral activity against HIV-1 variants resistant to IN strand transfer inhibitors and other classes of antiretroviral drugs. The virologic profile of BDM-2 and the recently completed single ascending dose phase I trial (ClinicalTrials.gov identifier: NCT03634085) warrant further clinical investigation for use in combination with other antiretroviral drugs. Moreover, our results suggest routes for further improvement of this emerging drug class.

[1]  A. Engelman,et al.  The Drug-Induced Interface That Drives HIV-1 Integrase Hypermultimerization and Loss of Function , 2023, mBio.

[2]  A. Engelman,et al.  Allosteric Integrase Inhibitor Influences on HIV-1 Integration and Roles of LEDGF/p75 and HDGFL2 Host Factors , 2022, Viruses.

[3]  F. Bushman,et al.  Structure of a HIV-1 IN-Allosteric inhibitor complex at 2.93 Å resolution: Routes to inhibitor optimization , 2022, bioRxiv.

[4]  K. Kish,et al.  Discovery and Preclinical Profiling of GSK3839919, a Potent HIV-1 Allosteric Integrase Inhibitor. , 2022, ACS medicinal chemistry letters.

[5]  A. Engelman,et al.  Structure and function of retroviral integrase , 2021, Nature Reviews Microbiology.

[6]  A. Engelman,et al.  A highly potent and safe pyrrolopyridine-based allosteric HIV-1 integrase inhibitor targeting host LEDGF/p75-integrase interaction site , 2021, PLoS pathogens.

[7]  Z. Debyser,et al.  GS-9822, a Preclinical LEDGIN Candidate, Displays a Block-and-Lock Phenotype in Cell Culture , 2021, Antimicrobial Agents and Chemotherapy.

[8]  F. Bushman,et al.  Allosteric HIV integrase inhibitors promote formation of inactive branched polymers via homomeric carboxy-terminal domain interactions. , 2020, Structure.

[9]  Z. Debyser,et al.  Block-And-Lock Strategies to Cure HIV Infection , 2020, Viruses.

[10]  Christopher J. Williams,et al.  Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix , 2019, Acta crystallographica. Section D, Structural biology.

[11]  A. Engelman Multifaceted HIV integrase functionalities and therapeutic strategies for their inhibition , 2019, The Journal of Biological Chemistry.

[12]  A. Engelman,et al.  HIV-1 integrase tetramers are the antiviral target of pyridine-based allosteric integrase inhibitors , 2019, eLife.

[13]  Barry L. Johnson,et al.  5,6,7,8-Tetrahydro-1,6-naphthyridine Derivatives as Potent HIV-1-Integrase-Allosteric-Site Inhibitors. , 2019, Journal of medicinal chemistry.

[14]  A. Saïb,et al.  Structure-function analyses unravel distinct effects of allosteric inhibitors of HIV-1 integrase on viral maturation and integration , 2018, The Journal of Biological Chemistry.

[15]  Gwyndaf Evans,et al.  DIALS: implementation and evaluation of a new integration package , 2018, Acta crystallographica. Section D, Structural biology.

[16]  Christopher J. Williams,et al.  MolProbity: More and better reference data for improved all‐atom structure validation , 2018, Protein science : a publication of the Protein Society.

[17]  M. Kvaratskhelia,et al.  Allosteric HIV-1 Integrase Inhibitors Lead to Premature Degradation of the Viral RNA Genome and Integrase in Target Cells , 2017, Journal of Virology.

[18]  F. Bushman,et al.  Structural Basis for Inhibitor-Induced Aggregation of HIV Integrase , 2016, PLoS biology.

[19]  A. Engelman,et al.  Allosteric HIV‐1 integrase inhibitors promote aberrant protein multimerization by directly mediating inter‐subunit interactions: Structural and thermodynamic modeling studies , 2016, Protein science : a publication of the Protein Society.

[20]  K. White,et al.  Antiviral Activity of Bictegravir (GS-9883), a Novel Potent HIV-1 Integrase Strand Transfer Inhibitor with an Improved Resistance Profile , 2016, Antimicrobial Agents and Chemotherapy.

[21]  P. Bieniasz,et al.  HIV-1 Integrase Binds the Viral RNA Genome and Is Essential during Virion Morphogenesis , 2016, Cell.

[22]  Suha M. Saleh,et al.  LEDGIN-mediated Inhibition of Integrase–LEDGF/p75 Interaction Reduces Reactivation of Residual Latent HIV , 2016, EBioMedicine.

[23]  F. Bushman,et al.  The Competitive Interplay between Allosteric HIV-1 Integrase Inhibitor BI/D and LEDGF/p75 during the Early Stage of HIV-1 Replication Adversely Affects Inhibitor Potency. , 2016, ACS chemical biology.

[24]  A. Engelman,et al.  Distribution and Redistribution of HIV-1 Nucleocapsid Protein in Immature, Mature, and Integrase-Inhibited Virions: a Role for Integrase in Maturation , 2015, Journal of Virology.

[25]  F. Bushman,et al.  Allosteric Inhibition of Human Immunodeficiency Virus Integrase , 2014, The Journal of Biological Chemistry.

[26]  A. Marchand,et al.  LEDGINs, non-catalytic site inhibitors of HIV-1 integrase: a patent review (2006 – 2014) , 2014, Expert opinion on therapeutic patents.

[27]  F. Bushman,et al.  A New Class of Multimerization Selective Inhibitors of HIV-1 Integrase , 2014, PLoS pathogens.

[28]  Araz Jakalian,et al.  Discovery of BI 224436, a Noncatalytic Site Integrase Inhibitor (NCINI) of HIV-1. , 2014, ACS medicinal chemistry letters.

[29]  J. Duan,et al.  Preclinical Profile of BI 224436, a Novel HIV-1 Non-Catalytic-Site Integrase Inhibitor , 2014, Antimicrobial Agents and Chemotherapy.

[30]  ビー・ナラシムフル・ナイドゥ,et al.  Inhibitors of human immunodeficiency virus replication , 2014 .

[31]  M. Wainberg,et al.  The M50I polymorphic substitution in association with the R263K mutation in HIV-1 subtype B integrase increases drug resistance but does not restore viral replicative fitness , 2014, Retrovirology.

[32]  A. Saïb,et al.  Dual inhibition of HIV-1 replication by integrase-LEDGF allosteric inhibitors is predominant at the post-integration stage , 2013, Retrovirology.

[33]  Randy J. Read,et al.  Phaser.MRage: automated molecular replacement , 2013, Acta crystallographica. Section D, Biological crystallography.

[34]  S. Yant,et al.  Non-Catalytic Site HIV-1 Integrase Inhibitors Disrupt Core Maturation and Induce a Reverse Transcription Block in Target Cells , 2013, PloS one.

[35]  S. Piscitelli,et al.  Pharmacokinetics, Safety, and Monotherapy Antiviral Activity of GSK1265744, an HIV Integrase Strand Transfer Inhibitor , 2013, HIV clinical trials.

[36]  C. Weydert,et al.  LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions , 2013, Retrovirology.

[37]  A. Engelman,et al.  Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation , 2013, Proceedings of the National Academy of Sciences.

[38]  M. Wainberg,et al.  Evolution of HIV integrase resistance mutations , 2012, Current opinion in infectious diseases.

[39]  D. Hazuda HIV integrase as a target for antiretroviral therapy , 2012, Current opinion in HIV and AIDS.

[40]  Xiaohong Liu,et al.  New Class of HIV-1 Integrase (IN) Inhibitors with a Dual Mode of Action , 2012, The Journal of Biological Chemistry.

[41]  A. Engelman,et al.  Multimode, Cooperative Mechanism of Action of Allosteric HIV-1 Integrase Inhibitors* , 2012, The Journal of Biological Chemistry.

[42]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[43]  A.S.贝尔,et al.  Hiv replication inhibitor , 2011 .

[44]  Roman A. Laskowski,et al.  LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery , 2011, J. Chem. Inf. Model..

[45]  Shigeru Miki,et al.  In Vitro Antiretroviral Properties of S/GSK1349572, a Next-Generation HIV Integrase Inhibitor , 2010, Antimicrobial Agents and Chemotherapy.

[46]  P. Champ,et al.  Validation of crystallographic models containing TLS or other descriptions of anisotropy. , 2010, Acta crystallographica. Section D, Biological crystallography.

[47]  A. Marchand,et al.  Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. , 2010, Nature chemical biology.

[48]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[49]  Paul D Adams,et al.  Electronic Reprint Biological Crystallography Electronic Ligand Builder and Optimization Workbench (elbow ): a Tool for Ligand Coordinate and Restraint Generation Biological Crystallography Electronic Ligand Builder and Optimization Workbench (elbow): a Tool for Ligand Coordinate and Restraint Gener , 2022 .

[50]  A. Engelman,et al.  Structural Basis for Functional Tetramerization of Lentiviral Integrase , 2009, PLoS pathogens.

[51]  A. Engelman,et al.  Dynamic Modulation of HIV-1 Integrase Structure and Function by Cellular Lens Epithelium-derived Growth Factor (LEDGF) Protein* , 2008, Journal of Biological Chemistry.

[52]  A. Engelman,et al.  The Lentiviral Integrase Binding Protein LEDGF/p75 and HIV-1 Replication , 2008, PLoS pathogens.

[53]  Judith D. Cohn,et al.  Automated ligand fitting by core-fragment fitting and extension into density , 2006, Acta crystallographica. Section D, Biological crystallography.

[54]  Paul Shinn,et al.  A role for LEDGF/p75 in targeting HIV DNA integration , 2005, Nature Medicine.

[55]  A. Engelman,et al.  Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Myriam Witvrouw,et al.  Integrase Mutants Defective for Interaction with LEDGF/p75 Are Impaired in Chromosome Tethering and HIV-1 Replication* , 2005, Journal of Biological Chemistry.

[57]  A. W. Schüttelkopf,et al.  PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. , 2004, Acta crystallographica. Section D, Biological crystallography.

[58]  Zeger Debyser,et al.  HIV-1 Integrase Forms Stable Tetramers and Associates with LEDGF/p75 Protein in Human Cells* , 2003, The Journal of Biological Chemistry.

[59]  A. Engelman,et al.  Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. , 1994, Science.

[60]  M. Prichard,et al.  A three-dimensional model to analyze drug-drug interactions. , 1990, Antiviral research.

[61]  Francesca Ceccherini-Silberstein,et al.  Characterization and structural analysis of HIV-1 integrase conservation. , 2009, AIDS reviews.

[62]  W. Delano The PyMOL Molecular Graphics System , 2002 .