Control of semiconductor emitter frequency by increasing polariton momenta

[1]  M. Soljačić,et al.  Making two-photon processes dominate one-photon processes using mid-IR phonon polaritons , 2017, Proceedings of the National Academy of Sciences.

[2]  M. Soljačić,et al.  Constructing “Designer Atoms” via Resonant Graphene-Induced Lamb Shifts , 2017 .

[3]  M. Soljačić,et al.  Tunable UV-Emitters through Graphene Plasmonics. , 2017, Nano letters.

[4]  Jinlong Yang,et al.  Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity , 2017, Nature Communications.

[5]  Kenji Watanabe,et al.  Tuning quantum nonlocal effects in graphene plasmonics , 2017, Science.

[6]  T. Christensen From Classical to Quantum Plasmonics in Three and Two Dimensions , 2017 .

[7]  Stefan A. Maier,et al.  Quantum Plasmonics , 2016, Proceedings of the IEEE.

[8]  Yichen Shen,et al.  All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene–boron nitride heterostructures , 2016, Proceedings of the National Academy of Sciences.

[9]  F. Guinea,et al.  Polaritons in layered two-dimensional materials. , 2016, Nature materials.

[10]  D. N. Basov,et al.  Polaritons in van der Waals materials , 2016, Science.

[11]  D. Griffiths Introduction to Quantum Mechanics , 2016 .

[12]  Á. Rubio,et al.  Quantum plasmonics: from jellium models to ab initio calculations , 2016 .

[13]  Bo Zhen,et al.  Shrinking light to allow forbidden transitions on the atomic scale , 2016, Science.

[14]  Wenqi Zhu,et al.  Quantum mechanical effects in plasmonic structures with subnanometre gaps , 2016, Nature Communications.

[15]  Klaus Suhling,et al.  Spontaneous emission in non-local materials , 2016, Light: Science & Applications.

[16]  J. Joannopoulos,et al.  Quantum \v{C}erenkov Effect from Hot Carriers in Graphene: An Efficient Plasmonic Source , 2015, 1510.00883.

[17]  Matthew Pelton,et al.  Modified spontaneous emission in nanophotonic structures , 2015, Nature Photonics.

[18]  N. Mortensen,et al.  Multipole plasmons and their disappearance in few-nanometre silver nanoparticles , 2015, Nature Communications.

[19]  D. Neuhauser,et al.  Quantum-Spillover-Enhanced Surface-Plasmonic Absorption at the Interface of Silver and High-Index Dielectrics. , 2015, Physical review letters.

[20]  N. Mortensen,et al.  Nonlocal optical response in metallic nanostructures , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  G. Vignale,et al.  Highly confined low-loss plasmons in graphene-boron nitride heterostructures. , 2014, Nature materials.

[22]  W. Barnes,et al.  Strong coupling between surface plasmon polaritons and emitters: a review , 2014, Reports on progress in physics. Physical Society.

[23]  A. H. Castro Neto,et al.  Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride , 2014, Science.

[24]  F. D. Abajo,et al.  Graphene Plasmonics: Challenges and Opportunities , 2014, 1402.1969.

[25]  Zhi-Xun Shen,et al.  Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. , 2014, Nature nanotechnology.

[26]  Marin Soljacic,et al.  Plasmons in Graphene: Fundamental Properties and Potential Applications , 2013, Proceedings of the IEEE.

[27]  Min Seok Jang,et al.  Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. , 2013, Nano letters.

[28]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[29]  Sefaattin Tongay,et al.  Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. , 2012, Nano letters.

[30]  A. Jauho,et al.  Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS , 2012, 1210.2535.

[31]  T. Pedersen,et al.  Indirect optical absorption in silicon via thin-film surface plasmon , 2012 .

[32]  J. Dionne,et al.  Quantum plasmon resonances of individual metallic nanoparticles , 2012, Nature.

[33]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits: Coldren/Diode Lasers 2E , 2012 .

[34]  C. N. Lau,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[35]  S. Thongrattanasiri,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[36]  S. Thongrattanasiri,et al.  Complete optical absorption in periodically patterned graphene. , 2011, Physical review letters.

[37]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[38]  Thomas Søndergaard,et al.  Dyadic Green's functions of thin films: Applications within plasmonic solar cells , 2011 .

[39]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[40]  S. Scheel,et al.  Macroscopic QED - concepts and applications , 2009 .

[41]  S. Scheel,et al.  MACROSCOPIC QUANTUM ELECTRODYNAMICS — CONCEPTS AND APPLICATIONS , 2008, 0902.3586.

[42]  S. Sarma,et al.  Measurement of scattering rate and minimum conductivity in graphene. , 2007, Physical review letters.

[43]  G. Shvets,et al.  Near-Field Microscopy Through a SiC Superlens , 2006, Science.

[44]  Stephan W Koch,et al.  Vacuum Rabi splitting in semiconductors , 2006 .

[45]  F. Keilmann,et al.  Phonon-enhanced light–matter interaction at the nanometre scale , 2002, Nature.

[46]  A. Neogi,et al.  Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling , 2002, cond-mat/0204150.

[47]  Kurt Busch,et al.  Theory of fluorescence in photonic crystals , 2002 .

[48]  Valenta,et al.  Picosecond and millisecond dynamics of photoexcited carriers in porous silicon. , 1996, Physical review. B, Condensed matter.

[49]  A. Theuwissen,et al.  Solid-State Imaging with Charge-Coupled Devices , 1995 .

[50]  C. cohen-tannoudji,et al.  Photons and Atoms: Introduction to Quantum Electrodynamics , 1989 .

[51]  J. Sipe,et al.  Quantum electrodynamics near an interface , 1984 .

[52]  Daniel Kleppner,et al.  Inhibited Spontaneous Emission , 1981 .

[53]  H. Bethe The Electromagnetic shift of energy levels , 1947 .

[54]  Willis E. Lamb,et al.  Fine Structure of the Hydrogen Atom by a Microwave Method , 1947 .

[55]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[56]  T. C. Mcgill,et al.  Prospects for the future of narrow bandgap materials , 1993 .

[57]  R. Glauber,et al.  Quantum optics of dielectric media. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[58]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .