On the extension of ET-FDSOI roadmap for 22 nm node and beyond

Abstract With the current scenario of different candidates to lead the road to 14 nm node and beyond, this work presents a thorough Multi-Subband Ensemble Monte Carlo (MS-EMC) study of the scaling possibilities of Extremely Thin Silicon on Insulator technology (ETSOI) considering the impact of Buried Oxide (BOX) engineering on the electrostatic integrity of devices addressed for the forthcoming technological nodes. The simulations show that the combined use of Ultra Thin BOX (UTBOX) and Ground Plane/Back Bias (GP/BB) plane are enabling techniques to ensure an adequate control of Short Channel Effects (SCEs) in order to extend the roadmap of ETSOI technology down to 11 nm node and beyond. BOX engineering also makes possible a redefinition of standard scaling rules relaxing the constraints on LG/TSi ratio with the advantage over Multiple Gate FETs (MuGFETs) based architectures of a fully compatible fabrication process with main stream planar technologies.

[1]  Fischetti,et al.  Monte Carlo study of electron transport in silicon inversion layers. , 1993, Physical review. B, Condensed matter.

[2]  S. Takagi,et al.  CMOS integration of InGaAs nMOSFETs and Ge pMOSFETs with self-align Ni-based metal S/D using direct wafer bonding , 2011, 2011 Symposium on VLSI Technology - Digest of Technical Papers.

[3]  Mark Y. Liu,et al.  Technology options for 22nm and beyond , 2010, 2010 International Workshop on Junction Technology Extended Abstracts.

[4]  F. Gámiz,et al.  Electron transport in strained Si inversion layers grown on SiGe-on-insulator substrates , 2002 .

[5]  N. Loubet,et al.  Scalability of Extremely Thin SOI (ETSOI) MOSFETs to Sub-20-nm Gate Length , 2012, IEEE Electron Device Letters.

[6]  Junjun Li,et al.  Fully depleted extremely thin SOI for mainstream 20nm low-power technology and beyond , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[7]  S. Datta,et al.  Simulating quantum transport in nanoscale transistors: Real versus mode-space approaches , 2002 .

[8]  P. Dollfus,et al.  Multi sub-band Monte Carlo simulation of an ultra-thin double gate MOSFET with 2D electron gas , 2006 .

[9]  A. Chou,et al.  Hybrid-orientation technology (HOT): opportunities and challenges , 2006, IEEE Transactions on Electron Devices.

[10]  J. A. López-Villanueva,et al.  Effects of the inversion layer centroid on MOSFET behavior , 1997 .

[11]  Chi-Woo Lee,et al.  Nanowire transistors without junctions. , 2010, Nature nanotechnology.

[12]  A. Asenov,et al.  Accurate Statistical Description of Random Dopant-Induced Threshold Voltage Variability , 2008, IEEE Electron Device Letters.

[13]  J. A. López-Villanueva,et al.  Monte Carlo simulation of electron mobility in silicon-on-insulator structures , 2002 .

[14]  Isabel M. Tienda-Luna,et al.  Multi-Subband Ensemble Monte Carlo simulation of bulk MOSFETs for the 32 nm-node and beyond , 2011 .

[15]  O Faynot,et al.  Planar FDSOI technology for sub 22nm nodes , 2010, Proceedings of 2010 International Symposium on VLSI Technology, System and Application.

[16]  Francisco Jimenez-Molinos,et al.  Coulomb scattering in high-κ gate stack silicon-on-insulator metal-oxide-semiconductor field effect transistors , 2008 .

[17]  Sorin Cristoloveanu,et al.  Why the Universal Mobility Is Not , 2010, IEEE Transactions on Electron Devices.

[18]  L. Selmi,et al.  The Monte Carlo approach to transport modeling in deca-nanometer MOSFETs☆ , 2008 .

[19]  S. Cristoloveanu,et al.  How Many Gates do we Need in a Transistor? , 2007, 2007 International Semiconductor Conference.

[20]  Antonio J. Garcia-Loureiro,et al.  Multi-Subband Monte Carlo study of device orientation effects in ultra-short channel DGSOI , 2010 .

[21]  F. Gamiz,et al.  A Comprehensive Study of the Corner Effects in Pi-Gate MOSFETs Including Quantum Effects , 2007, IEEE Transactions on Electron Devices.

[22]  R.H. Dennard,et al.  Design Of Ion-implanted MOSFET's with Very Small Physical Dimensions , 1974, Proceedings of the IEEE.

[23]  J. A. López-Villanueva,et al.  Surface roughness at the Si–SiO2 interfaces in fully depleted silicon-on-insulator inversion layers , 1999 .

[24]  W. Haensch,et al.  Undoped-Body Extremely Thin SOI MOSFETs With Back Gates , 2009, IEEE Transactions on Electron Devices.

[25]  O. Faynot,et al.  Impact of a 10nm Ultra-Thin BOX (UTBOX) and Ground Plane on FDSOI devices for 32nm node and below , 2010, 2009 Proceedings of ESSCIRC.

[26]  Jean-Pierre Colinge,et al.  FinFETs and Other Multi-Gate Transistors , 2007 .

[27]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[28]  V. Trivedi,et al.  Nanoscale FD/SOI CMOS: thick or thin BOX? , 2005, IEEE Electron Device Letters.

[29]  Luca Donetti,et al.  Reaching sub-32 nm nodes: ET-FDSOI and BOX optimization , 2012 .

[30]  Kelin J. Kuhn,et al.  CMOS scaling for the 22nm node and beyond: Device physics and technology , 2011, Proceedings of 2011 International Symposium on VLSI Technology, Systems and Applications.

[31]  O. Rozeau,et al.  Multi-$V_{T}$ UTBB FDSOI Device Architectures for Low-Power CMOS Circuit , 2011, IEEE Transactions on Electron Devices.

[32]  Luca Selmi,et al.  A comparison of advanced transport models for the computation of the drain current in nanoscale nMOSFETs , 2009 .