Constructions for strictly cyclic 3-designs and applications to optimal OOCs with lambda=2

In this paper we give some recursive constructions for strictly cyclic 3-designs. Using these constructions we have some infinite families of strictly cyclic Steiner quadruple systems and optimal optical orthogonal codes with weight 4 and index 2. As corollaries, many known constructions for strictly cyclic Steiner quadruple systems and optimal optical orthogonal codes are unified. We also notice that there does not exist an optimal (n,4,2)-OOC for any n=0 (mod24). Thus we introduce the concept of strictly cyclic maximal packing quadruple systems to deal with the cases of n=0 (mod24) for (n,4,2)-OOCs. By our recursive constructions, some infinite families are also given on strictly cyclic maximal packing quadruple systems.

[1]  Alexander Rosa,et al.  Steiner quadruple systems - a survey , 1978, Discret. Math..

[2]  Hedvig Mohácsy,et al.  Candelabra systems and designs , 2002 .

[3]  Haim Hanani,et al.  On Quadruple Systems , 1960, Canadian Journal of Mathematics.

[4]  Selmer M. Johnson A new upper bound for error-correcting codes , 1962, IRE Trans. Inf. Theory.

[5]  L. Ji On the 3BD-closed set B3( 4, 5 ) , 2004, Discret. Math..

[6]  Fan Chung Graham,et al.  Optical orthogonal codes: Design, analysis, and applications , 1989, IEEE Trans. Inf. Theory.

[7]  Optical orthogonal codes: Design, . . . , 1989 .

[8]  Charles C. Lindner,et al.  Steiner Quadruple Systems , 2008 .

[9]  Hanfried Lenz,et al.  Design theory , 1985 .

[10]  Selmer M. Johnson,et al.  Upper bounds for constant weight error correcting codes , 1972, Discret. Math..

[11]  Tuvi Etzion,et al.  The last packing number of quadruples, and cyclic SQS , 1993, Des. Codes Cryptogr..

[12]  Helmut Siemon Infinite families of strictly cyclic Steiner quadruple systems , 1989, Discret. Math..

[13]  Helmut Siemon On the existence of cyclic Steiner Quadruple systems SQS (2p) , 1991, Discret. Math..

[14]  Charles J. Colbourn,et al.  Recursive constructions for optimal (n,4,2)-OOCs , 2004 .

[15]  Solomon W. Golomb,et al.  A new recursive construction for optical orthogonal codes , 2003, IEEE Trans. Inf. Theory.

[16]  Lijun Ji,et al.  An improved product construction of rotational Steiner quadruple systems , 2002 .

[17]  Ryoh Fuji-Hara,et al.  Optical orthogonal codes: Their bounds and new optimal constructions , 2000, IEEE Trans. Inf. Theory.

[18]  Lijun Ji On the 3BD-closed set B3({4,5,6}) , 2004 .

[19]  Helmut Siemon,et al.  A Number Theoretic Conjecture and the Existence of S–Cyclic Steiner Quadruple Systems , 1998, Des. Codes Cryptogr..

[20]  Charles J. Colbourn,et al.  Optimal (n, 4, 2)-OOC of small orders , 2004, Discret. Math..

[21]  Alan Hartman,et al.  The fundamental construction for 3-designs , 1994, Discret. Math..

[22]  M. Grannell,et al.  Some Recent Results on Cyclic Steiner Quadruple Systems - A Survey , 1983 .

[23]  Haim Hanani,et al.  On Some Tactical Configurations , 1963, Canadian Journal of Mathematics.

[24]  Egmont Köhler Zyklische Quadrupelsysteme , 1979 .

[25]  Helmut Siemon,et al.  Some remarks on the construction of cyclic Steiner Quadruple Systems , 1987 .