Halogen-bonding-triggered supramolecular gel formation.

[1]  C. Aakeröy,et al.  Avoiding “Synthon Crossover” in Crystal Engineering with Halogen Bonds and Hydrogen Bonds , 2011 .

[2]  Yurong Tang,et al.  Ultrasound-induced switching of sheetlike coordination polymer microparticles to nanofibers capable of gelating solvents. , 2009, Journal of the American Chemical Society.

[3]  Fuyou Li,et al.  Switchable fluorescent organogels and mesomorphic superstructure based on naphthalene derivatives. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[4]  J. Steed,et al.  Structure calculation of an elastic hydrogel from sonication of rigid small molecule components. , 2008, Angewandte Chemie.

[5]  J. Steed,et al.  Gelation is crucially dependent on functional group orientation and may be tuned by anion binding. , 2008, Chemical communications.

[6]  J. Steed,et al.  Metal-induced gelation in dipyridyl ureas , 2010 .

[7]  Jiangshan Shen,et al.  Anion-triggered melamine based self-assembly and hydrogel. , 2010, Chemical communications.

[8]  H. Maeda Anion-responsive supramolecular gels. , 2008, Chemistry.

[9]  Richard G. Weiss,et al.  Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. , 1997, Chemical reviews.

[10]  E. Ostuni,et al.  Novel X‐ray Method for In Situ Determination of Gelator Strand Structure: Polymorphism of Cholesteryl Anthraquinone‐2‐carboxylate , 1996 .

[11]  J. Steed,et al.  Anion tuning and polymer templating in a simple low molecular weight organogelator. , 2011, Chemical communications.

[12]  H. Wenk,et al.  2,3,5,6-Tetrafluorophenylnitren-4-yl: a quartet-ground-state nitrene radical. , 2002, Angewandte Chemie.

[13]  J. Steed,et al.  Gradual Transition from NH···Pyridyl Hydrogen Bonding to the NH···O Tape Synthon in Pyridyl Ureas , 2008 .

[14]  P. Dastidar Supramolecular gelling agents: can they be designed? , 2008, Chemical Society reviews.

[15]  Bing Xu,et al.  Self-assembly of small molecules affords multifunctional supramolecular hydrogels for topically treating simulated uranium wounds. , 2005, Chemical communications.

[16]  J. Steed,et al.  Anion tuning of chiral bis(urea) low molecular weight gels , 2012 .

[17]  M. Henry Nonempirical quantification of molecular interactions in supramolecular assemblies. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[18]  S. Weiner,et al.  An organic hydrogel as a matrix for the growth of calcite crystals. , 2004, Organic & biomolecular chemistry.

[19]  J. Steed,et al.  Helical or Polar Guest-Dependent Z‘ = 1.5 or Z‘ = 2 Forms of a Sterically Hindered Bis(urea) Clathrate , 2006 .

[20]  Pierangelo Metrangolo,et al.  Halogen bonding based recognition processes: a world parallel to hydrogen bonding. , 2005, Accounts of chemical research.

[21]  G. Day,et al.  A cocrystal strategy to tune the luminescent properties of stilbene-type organic solid-state materials. , 2011, Angewandte Chemie.

[22]  J. Steed,et al.  Exploiting cavities in supramolecular gels. , 2010, Angewandte Chemie.

[23]  P. Beer,et al.  Halogen Bonding in Supramolecular Chemistry. , 2008, Chemical reviews.

[24]  F. Fages Metal coordination to assist molecular gelation. , 2006, Angewandte Chemie.

[25]  A. Hamilton,et al.  Water gelation by small organic molecules. , 2004, Chemical reviews.

[26]  Lee Brammer,et al.  New trends in crystal engineering , 2005 .

[27]  Jonathan W Steed,et al.  Metal- and anion-binding supramolecular gels. , 2010, Chemical reviews.

[28]  B. Feringa,et al.  Two-stage enzyme mediated drug release from LMWG hydrogels. , 2005, Organic & biomolecular chemistry.

[29]  B. Escuder,et al.  Supramolecular gels as active media for organic reactions and catalysis , 2010 .

[30]  Jonathan W Steed,et al.  Anion-tuning of supramolecular gel properties , 2009, Nature Chemistry.

[31]  B. Escuder,et al.  Switchable performance of an L-proline-derived basic catalyst controlled by supramolecular gelation. , 2009, Journal of the American Chemical Society.

[32]  C. Aakeröy,et al.  Facile synthesis and supramolecular chemistry of hydrogen bond/halogen bond-driven multi-tasking tectons. , 2011, Chemical communications.

[33]  M. Mocerino,et al.  Proline-functionalised calix[4]arene: an anion-triggered hydrogelator. , 2008, Chemical communications.

[34]  V. John,et al.  Urea and thiourea derivatives as low molecular-mass organogelators. , 2005, Chemistry.

[35]  P. Metrangolo,et al.  Highly interpenetrated supramolecular networks supported by N...I halogen bonding. , 2007, Chemistry.

[36]  J. Atwood,et al.  Encyclopedia of supramolecular chemistry , 2004 .

[37]  Hanying Li,et al.  Gel incorporation inside of organic single crystals grown in agarose hydrogels , 2011 .

[38]  Zhen Tong,et al.  Redox-responsive gel-sol/sol-gel transition in poly(acrylic acid) aqueous solution containing Fe(III) ions switched by light. , 2008, Journal of the American Chemical Society.

[39]  P. Metrangolo,et al.  Crystal Engineering through Halogen Bonding: Complexes of Nitrogen Heterocycles with Organic Iodides , 2001 .

[40]  Jonathan W. Steed,et al.  Anion-tuned supramolecular gels: a natural evolution from urea supramolecular chemistry. , 2010, Chemical Society reviews.

[41]  Pierangelo Metrangolo,et al.  Halogen bonding: a general route in anion recognition and coordination. , 2010, Chemical Society reviews.

[42]  J. Steed,et al.  Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth , 2010, Nature Chemistry.

[43]  Yi‐Hung Liu,et al.  Acid/base- and anion-controllable organogels formed from a urea-based molecular switch. , 2010, Angewandte Chemie.

[44]  J. Steed Supramolecular gel chemistry: developments over the last decade. , 2011, Chemical communications.

[45]  M. Jaskólski,et al.  Crystal engineering with hydrogen bonds and halogen bonds , 2005 .

[46]  T. Naota,et al.  Molecules that assemble by sound: an application to the instant gelation of stable organic fluids. , 2005, Journal of the American Chemical Society.

[47]  Kumar Biradha,et al.  Recent Developments in Crystal Engineering , 2011 .

[48]  David K. Smith,et al.  Molecular Gels – Nanostructured Soft Materials , 2008 .

[49]  J. Steed,et al.  Shear induced gelation in a copper(II) metallogel: new aspects of ion-tunable rheology and gel-reformation by external chemical stimuli , 2010 .

[50]  P. Das,et al.  Counterion dependent hydrogelation of amino acid based amphiphiles: switching from non-gelators to gelators and facile synthesis of silver nanoparticles , 2009 .

[51]  P. Dastidar,et al.  Composites of N,N′-bis-(pyridyl) urea-dicarboxylic acid as new hydrogelators—a crystal engineering approach , 2007 .

[52]  J. Steed,et al.  Metal ion and anion-based "tuning" of a supramolecular metallogel. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[53]  G. Cravotto,et al.  Molecular self-assembly and patterning induced by sound waves. The case of gelation. , 2009, Chemical Society reviews.

[54]  B. Nilsson,et al.  Complementary π-π interactions induce multicomponent coassembly into functional fibrils. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[55]  M. Henry Thermodynamics of hydrogen bond patterns in supramolecular assemblies of water molecules. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[56]  David K Smith,et al.  High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. , 2008, Angewandte Chemie.

[57]  Jamie R Moffat,et al.  Controlled self-sorting in the assembly of 'multi-gelator' gels. , 2009, Chemical communications.