Efficient Synthesis of Quinoxaline Derivatives by Selective Modification of 3‐Chloro‐6‐fluoroquinoxalin‐2(1H)‐one 4‐Oxide

The readily available and polyfunctionalized 3-chloro-6-fluoroquinoxalin-2(1H)-one 4-oxide, derived from the efficient one-step annulation reaction of 1,1,2-trichloro-2-nitroethene with 4-fluoroaniline, was selectively modified at the chloronitrone and the amide units, leading to more than 30 new quinoxaline derivatives with a unique substitution pattern in good to excellent yields. In addition, the electronic properties of the versatile starting compound were computed by means of density functional theory, which gave a reasonable explanation for its unique reactivity. The antimalarial activity of all hitherto unknown compounds has been investigated.

[1]  N. Kang,et al.  Synthesis, anticancer activity and pharmacokinetic analysis of 1-[(substituted 2-alkoxyquinoxalin-3-yl)aminocarbonyl]-4-(hetero)arylpiperazine derivatives. , 2012, Bioorganic & medicinal chemistry.

[2]  R. Smits,et al.  Ligand based design of novel histamine H₄ receptor antagonists; fragment optimization and analysis of binding kinetics. , 2012, Bioorganic & medicinal chemistry letters.

[3]  Junyi Hu,et al.  Regiospecific synthesis of 1,2-disubstituted (hetero)aryl fused imidazoles with tunable fluorescent emission. , 2011, Organic letters.

[4]  M. Elhefnawi,et al.  Part I: Synthesis, cancer chemopreventive activity and molecular docking study of novel quinoxaline derivatives. , 2011, European journal of medicinal chemistry.

[5]  C. Ahn,et al.  Synthesis and anticancer activity of new 1-[(5 or 6-substituted 2-alkoxyquinoxalin-3-yl)aminocarbonyl]-4-(hetero)arylpiperazine derivatives. , 2010, Bioorganic & medicinal chemistry.

[6]  D. Kaufmann,et al.  A DFT study on the mechanism of the annulation reaction of trichloronitroethylene with aniline in the synthesis of quinoxalinone-N-oxides. , 2009, The Journal of organic chemistry.

[7]  Ying Guo,et al.  Synthesis and biological evaluation of N4-(hetero)arylsulfonylquinoxalinones as HIV-1 reverse transcriptase inhibitors. , 2009, Bioorganic & medicinal chemistry.

[8]  L. M. Lima,et al.  Selective activity against Mycobacteriumtuberculosis of new quinoxaline 1,4-di-N-oxides. , 2009, Bioorganic & medicinal chemistry.

[9]  Rob Leurs,et al.  Fragment based design of new H4 receptor-ligands with anti-inflammatory properties in vivo. , 2008, Journal of medicinal chemistry.

[10]  Qiaojun He,et al.  Q39, a novel synthetic Quinoxaline 1,4-Di-N-oxide compound with anti-cancer activity in hypoxia. , 2008, European journal of pharmacology.

[11]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[12]  R. Aggarwal,et al.  Hypervalent iodine oxidation of benzil-α-arylimino oximes: an efficient synthesis of 2,3-diphenylquinoxaline-1-oxides , 2006 .

[13]  S. Müller,et al.  3-Aminooxy-1-Aminopropane and Derivatives Have an Antiproliferative Effect on Cultured Plasmodium falciparum by Decreasing Intracellular Polyamine Concentrations , 2005, Antimicrobial Agents and Chemotherapy.

[14]  S. Zanetti,et al.  Synthesis, anti-mycobacterial, anti-trichomonas and anti-candida in vitro activities of 2-substituted-6,7-difluoro-3-methylquinoxaline 1,4-dioxides. , 2004, European journal of medicinal chemistry.

[15]  Michael R. Barbachyn,et al.  Struktur‐Wirkungs‐Beziehungen von Oxazolidinonen: Grundlage der Entwicklung von Linezolid , 2003 .

[16]  C. Hadjiantoniou-Maroulis,et al.  Synthesis of 2,3-Diphenylquinoxaline 1-Oxides by Oxidative Cyclization of Benzil α-Arylimino Oximes , 1998 .

[17]  Louis J. Farrugia,et al.  ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI) , 1997 .

[18]  J. Domagala Structure-activity and structure-side-effect relationships for the quinolone antibacterials. , 1994, The Journal of antimicrobial chemotherapy.

[19]  T. Waldron,et al.  Synthesis, biological properties, and structure-activity relationships of quinoxaline angiotensin II receptor antagonists , 1993 .

[20]  T. Waldron,et al.  Quinoxaline N-oxide containing potent angiotensin II receptor antagonists: synthesis, biological properties, and structure-activity relationships. , 1993, Journal of medicinal chemistry.

[21]  S. Zanetti,et al.  2-Phenyl-6(7)-R-substituted quinoxalines N-oxides. Synthesis, structure elucidation and antimicrobial activity , 1990 .

[22]  P. Fernandes,et al.  Structure-activity relationships of the fluoroquinolones , 1989, Antimicrobial Agents and Chemotherapy.

[23]  K. Makino,et al.  Synthesis of novel 6-substituted 2-chloro-3-methylquinoxalines , 1985 .

[24]  J. Haynes,et al.  Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique , 1979, Antimicrobial Agents and Chemotherapy.

[25]  K. Ley,et al.  Synthesen unter Verwendung von Benzofuroxan , 1975 .

[26]  M. Haddadin,et al.  Benzofurazan Oxide. II. Reactions with Enolate Anions , 1966 .

[27]  G. Tennant Heterocyclic N-oxides. IV. A general route to 2-n-alkyl-3,4-dihydro-3-oxoquinoxalines and their 1-oxides. , 1966, Journal of the Chemical Society. Perkin transactions 1.

[28]  Ziauddin,et al.  Quinoxaline derivatives—IV , 1965 .

[29]  M. Haddadin,et al.  Enamines with isobenzofuroxan: a novel synthesis of quinoxaline-di-n-oxides , 1965 .