Intraparietal regions play a material general role in working memory: Evidence supporting an internal attentional role

Determining the role of intraparietal sulcus (IPS) regions in working memory (WM) remains a topic of considerable interest and lack of clarity. One group of hypotheses, the internal attention view, proposes that the IPS plays a material general role in maintaining information in WM. An alternative viewpoint, the pure storage account, proposes that the IPS in each hemisphere maintains material specific (e.g., left--phonological; right--visuospatial) information. Yet, adjudication between competing theoretical perspectives is complicated by divergent findings from different methodologies and their use of different paradigms, perhaps most notably between functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). For example, fMRI studies typically use full field stimulus presentations and report bilateral IPS activation, whereas EEG studies direct attention to a single hemifield and report a contralateral bias in both hemispheres. Here, we addressed this question by applying a regions-of-interest fMRI approach to elucidate IPS contributions to WM. Importantly, we manipulated stimulus type (verbal, visuospatial) and the cued hemifield to assess the degree to which IPS activations reflect stimulus specific or stimulus general processing consistent with the pure storage or internal attention hypotheses. These data revealed significant contralateral bias along regions IPS0-5 regardless of stimulus type. Also present was a weaker stimulus-based bias apparent in stronger left lateralized activations for verbal stimuli and stronger right lateralized activations for visuospatial stimuli. However, there was no consistent stimulus-based lateralization of activity. Thus, despite the observation of stimulus-based modulation of spatial lateralization this pattern was bilateral. As such, although it is quantitatively underspecified, our results are overall more consistent with an internal attention view that the IPS plays a material general role in refreshing the contents of WM.

[1]  Nelson Cowan,et al.  Domain-general and domain-specific functional networks in working memory , 2014, NeuroImage.

[2]  T. Egner,et al.  Working memory as internal attention: Toward an integrative account of internal and external selection processes , 2012, Psychonomic Bulletin & Review.

[3]  Maro G. Machizawa,et al.  Neural activity predicts individual differences in visual working memory capacity , 2004, Nature.

[4]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[5]  D. Heeger,et al.  Topographic maps of visual spatial attention in human parietal cortex. , 2005, Journal of neurophysiology.

[6]  David C. Zhu,et al.  Functional specialization of the left ventral parietal cortex in working memory , 2014, Front. Hum. Neurosci..

[7]  Liang Wang,et al.  Probabilistic Maps of Visual Topography in Human Cortex. , 2015, Cerebral cortex.

[8]  Angela R. Laird,et al.  Modelling neural correlates of working memory: A coordinate-based meta-analysis , 2012, NeuroImage.

[9]  J. Fiez,et al.  A Comment on the Functional Localization of the Phonological Storage Subsystem of Working Memory , 1999, Brain and Cognition.

[10]  N. Cowan An embedded-processes model of working memory , 1999 .

[11]  Justin M. Ales,et al.  How to use fMRI functional localizers to improve EEG/MEG source estimation , 2015, Journal of Neuroscience Methods.

[12]  Edward K. Vogel,et al.  Event-Related Potential Measures of Visual Working Memory , 2006, Clinical EEG and neuroscience.

[13]  Julie A Fiez,et al.  Functional dissociations within the inferior parietal cortex in verbal working memory , 2004, NeuroImage.

[14]  George A. Alvarez,et al.  The compensatory dynamic of inter-hemispheric interactions in visuospatial attention revealed using rTMS and fMRI , 2014, Front. Hum. Neurosci..

[15]  Yuhong Jiang,et al.  Visual working memory for simple and complex features: An fMRI study , 2006, NeuroImage.

[16]  Steve Majerus,et al.  The left intraparietal sulcus and verbal short-term memory: Focus of attention or serial order? , 2006, NeuroImage.

[17]  Patrik Pluchino,et al.  A hemodynamic correlate of lateralized visual short-term memories , 2011, Neuropsychologia.

[18]  J. Jay Todd,et al.  Capacity limit of visual short-term memory in human posterior parietal cortex , 2004, Nature.

[19]  Nelson Cowan,et al.  A Neural Region of Abstract Working Memory , 2011, Journal of Cognitive Neuroscience.

[20]  Aiden E. G. F. Arnold,et al.  Structural connectivity of visuotopic intraparietal sulcus O F , 2013 .

[21]  Maro G. Machizawa,et al.  Capacity limit of visual short-term memory in human posterior parietal cortex , 2004 .

[22]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[23]  Daniel J. Mitchell,et al.  Human Neuroscience , 2022 .

[24]  J. Palva,et al.  Neuronal synchrony reveals working memory networks and predicts individual memory capacity , 2010, Proceedings of the National Academy of Sciences.

[25]  E. Vogel,et al.  Contralateral delay activity provides a neural measure of the number of representations in visual working memory. , 2010, Journal of neurophysiology.

[26]  Nicolas Robitaille,et al.  Distinguishing between lateralized and nonlateralized brain activity associated with visual short-term memory: fMRI, MEG, and EEG evidence from the same observers , 2010, NeuroImage.

[27]  Benjamin D. Singer,et al.  Retinotopic Organization of Human Ventral Visual Cortex , 2009, The Journal of Neuroscience.

[28]  B. Argall,et al.  Simplified intersubject averaging on the cortical surface using SUMA , 2006, Human brain mapping.

[29]  A. Baddeley,et al.  The multi-component model of working memory: Explorations in experimental cognitive psychology , 2006, Neuroscience.

[30]  Marian E. Berryhill,et al.  Insights from neuropsychology: pinpointing the role of the posterior parietal cortex in episodic and working memory , 2012, Front. Integr. Neurosci..

[31]  D. V. Essen,et al.  Cognitive neuroscience 2.0: building a cumulative science of human brain function , 2010, Trends in Cognitive Sciences.

[32]  F. Tong,et al.  Decoding reveals the contents of visual working memory in early visual areas , 2009, Nature.

[33]  S. Kastner,et al.  Shifting Attentional Priorities: Control of Spatial Attention through Hemispheric Competition , 2013, The Journal of Neuroscience.

[34]  Sabine Kastner,et al.  The representation of tool and non-tool object information in the human intraparietal sulcus. , 2013, Journal of neurophysiology.

[35]  E. Olivier,et al.  Event-related TMS over the right posterior parietal cortex induces ipsilateral visuo-spatial interference , 2001, Neuroreport.

[36]  Stephan Lewandowsky,et al.  No temporal decay in verbal short-term memory , 2009, Trends in Cognitive Sciences.

[37]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[38]  R. Kiani,et al.  Microstimulation of inferotemporal cortex influences face categorization , 2006, Nature.

[39]  M. Mesulam A cortical network for directed attention and unilateral neglect , 1981, Annals of neurology.

[40]  C. Gross,et al.  Representations of faces and body parts in macaque temporal cortex: a functional MRI study. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  K. Heilman,et al.  Right hemisphere dominance for attention , 1980, Neurology.

[42]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[43]  Mowei Shen,et al.  Storing fine detailed information in visual working memory--evidence from event-related potentials. , 2009, Journal of vision.

[44]  N. Cowan The magical number 4 in short-term memory: A reconsideration of mental storage capacity , 2001, Behavioral and Brain Sciences.

[45]  E C Wong,et al.  Processing strategies for time‐course data sets in functional mri of the human brain , 1993, Magnetic resonance in medicine.

[46]  A. Baddeley The episodic buffer: a new component of working memory? , 2000, Trends in Cognitive Sciences.

[47]  Yaoda Xu The Role of the Superior Intraparietal Sulcus in Supporting Visual Short-Term Memory for Multifeature Objects , 2007, The Journal of Neuroscience.

[48]  M. Kinsbourne Hemi-neglect and hemisphere rivalry. , 1977, Advances in neurology.

[49]  Julie A Fiez,et al.  Evaluating models of working memory through the effects of concurrent irrelevant information. , 2010, Journal of experimental psychology. General.

[50]  John T. Serences,et al.  Attention modulates spatial priority maps in the human occipital, parietal and frontal cortices , 2013, Nature Neuroscience.

[51]  J. Fiez,et al.  Using neuroimaging to evaluate models of working memory and their implications for language processing , 2003, Journal of Neurolinguistics.

[52]  Filippo Brighina,et al.  Perceptual and response bias in visuospatial neglect due to frontal and parietal repetitive transcranial magnetic stimulation in normal subjects , 2002, Neuroreport.

[53]  M. Chun,et al.  Dissociable neural mechanisms supporting visual short-term memory for objects , 2006, Nature.

[54]  M. Sereno,et al.  Mapping of Contralateral Space in Retinotopic Coordinates by a Parietal Cortical Area in Humans , 2001, Science.

[55]  Nancy Kanwisher,et al.  Broad domain generality in focal regions of frontal and parietal cortex , 2013, Proceedings of the National Academy of Sciences.

[56]  D. Somers,et al.  Hemispheric Asymmetry in Visuotopic Posterior Parietal Cortex Emerges with Visual Short-Term Memory Load , 2010, The Journal of Neuroscience.

[57]  R. Turner,et al.  Characterizing Evoked Hemodynamics with fMRI , 1995, NeuroImage.

[58]  Gordon D. A. Brown,et al.  Response to Barrouillet and Camos: Interference or decay in working memory? , 2009, Trends in Cognitive Sciences.

[59]  Aiden E. G. F. Arnold,et al.  Intraparietal sulcus activity and functional connectivity supporting spatial working memory manipulation. , 2015, Cerebral cortex.

[60]  J. Jay Todd,et al.  Posterior parietal cortex activity predicts individual differences in visual short-term memory capacity , 2010 .

[61]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[62]  Daniel J. Mitchell,et al.  Flexible, capacity-limited activity of posterior parietal cortex in perceptual as well as visual short-term memory tasks. , 2008, Cerebral cortex.

[63]  Benoit Brisson,et al.  Dissociation of the N2pc and sustained posterior contralateral negativity in a choice response task , 2008, Brain Research.

[64]  Brenna Argall,et al.  SUMA: an interface for surface-based intra- and inter-subject analysis with AFNI , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[65]  M. D’Esposito Working memory. , 2008, Handbook of clinical neurology.

[66]  Ingrid R. Olson,et al.  Some surprising findings on the involvement of the parietal lobe in human memory , 2009, Neurobiology of Learning and Memory.

[67]  Edward F. Ester,et al.  PSYCHOLOGICAL SCIENCE Research Article Stimulus-Specific Delay Activity in Human Primary Visual Cortex , 2022 .

[68]  A. Baddeley Working memory: looking back and looking forward , 2003, Nature Reviews Neuroscience.

[69]  Jöran Lepsien,et al.  Attentional orienting to mnemonic representations: Reduction of load-sensitive maintenance-related activity in the intraparietal sulcus , 2012, Neuropsychologia.

[70]  Michael A. Silver,et al.  Hemisphere-Dependent Attentional Modulation of Human Parietal Visual Field Representations , 2015, The Journal of Neuroscience.

[71]  M. Coltheart Hemispheric asymmetry , 1978, Nature.

[72]  N. Cowan The focus of attention as observed in visual working memory tasks: Making sense of competing claims , 2011, Neuropsychologia.

[73]  Edward Awh,et al.  Precision in Visual Working Memory Reaches a Stable Plateau When Individual Item Limits Are Exceeded , 2011, The Journal of Neuroscience.

[74]  S. Kastner,et al.  Mechanisms of Spatial Attention Control in Frontal and Parietal Cortex , 2010, The Journal of Neuroscience.

[75]  R. Marois,et al.  Posterior parietal cortex activity predicts individual differences in visual short-term memory capacity , 2005, Cognitive, affective & behavioral neuroscience.

[76]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[77]  Aiden E. G. F. Arnold,et al.  Structural connectivity of visuotopic intraparietal sulcus , 2013, NeuroImage.

[78]  Ingrid R. Olson,et al.  At the intersection of attention and memory: The mechanistic role of the posterior parietal lobe in working memory , 2011, Neuropsychologia.

[79]  M. Murray,et al.  EEG source imaging , 2004, Clinical Neurophysiology.

[80]  George A. Alvarez,et al.  The Role of the Parietal Lobe in Visual Extinction Studied with Transcranial Magnetic Stimulation , 2009, Journal of Cognitive Neuroscience.

[81]  A. A. Wijers,et al.  An event-related brain potential correlate of visual short-term memory. , 1999, Neuroreport.

[82]  Allen D. Malony,et al.  Localizing Movement-Related Primary Sensorimotor Cortices with Multi-Band EEG Frequency Changes and Functional MRI , 2014, PloS one.

[83]  Jason M. Chein,et al.  Domain-general mechanisms of complex working memory span , 2011, NeuroImage.

[84]  Sabine Kastner,et al.  Representation of Eye Movements and Stimulus Motion in Topographically Organized Areas of Human Posterior Parietal Cortex , 2008, The Journal of Neuroscience.

[85]  Steve Majerus,et al.  Short-term memory and the left intraparietal sulcus: Focus of attention? Further evidence from a face short-term memory paradigm , 2007, NeuroImage.

[86]  D. Heeger,et al.  Topographic organization for delayed saccades in human posterior parietal cortex. , 2005, Journal of neurophysiology.

[87]  Yuhong Jiang,et al.  Visual working memory for simple and complex visual stimuli , 2005 .

[88]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[89]  Henrik Walter,et al.  Verbal storage in a premotor–parietal network: evidence from fMRI-guided magnetic stimulation , 2003, NeuroImage.

[90]  Maro G. Machizawa,et al.  Electrophysiological Measures of Maintaining Representations in Visual Working Memory , 2007, Cortex.

[91]  Kaia L. Vilberg,et al.  Memory retrieval and the parietal cortex: A review of evidence from a dual-process perspective , 2008, Neuropsychologia.

[92]  A. Miyake,et al.  Models of Working Memory: Mechanisms of Active Maintenance and Executive Control , 1999 .

[93]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[94]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[95]  Filippo Brighina,et al.  Contralateral neglect induced by right posterior parietal rTMS in healthy subjects , 2000, Neuroreport.

[96]  Interference: unique source of forgetting in working memory? , 2009, Trends in Cognitive Sciences.

[97]  Maro G. Machizawa,et al.  Neural measures reveal individual differences in controlling access to working memory , 2005, Nature.

[98]  C. Phillips,et al.  Cross-Modal Decoding of Neural Patterns Associated with Working Memory: Evidence for Attention-Based Accounts of Working Memory. , 2016, Cerebral cortex.

[99]  Lotfi B Merabet,et al.  Visual Topography of Human Intraparietal Sulcus , 2007, The Journal of Neuroscience.

[100]  K M Heilman,et al.  [Right hemisphere dominance for attention]. , 1983, Revue neurologique.

[101]  D. Stuss,et al.  Cognitive neuroscience. , 1993, Current opinion in neurobiology.

[102]  R. Engle,et al.  The nature of individual differences in working memory capacity: active maintenance in primary memory and controlled search from secondary memory. , 2007, Psychological review.

[103]  S. Kastner,et al.  Topographic maps in human frontal and parietal cortex , 2009, Trends in Cognitive Sciences.

[104]  Alfonso Caramazza,et al.  Mechanisms of Spatial Attention Revealed by Hemispatial Neglect , 1999, Cortex.