Degenerate four-wave mixing in triply resonant Kerr cavities

We demonstrate theoretical conditions for highly efficient degenerate four-wave mixing in triply resonant nonlinear (Kerr) cavities. We employ a general and accurate temporal coupled-mode analysis in which the interaction of light in arbitrary microcavities is expressed in terms of a set of coupling coefficients that we rigorously derive from the full Maxwell equations. Using the coupled-mode theory, we show that light consisting of an input signal of frequency ω0 − �ω can, in the presence of pump light at ω0, be converted with quantumlimited efficiency into an output shifted signal of frequency ω0 + �ω , and we derive expressions for the critical input powers at which this occurs. We find the critical powers in the order of 10 mW, assuming very conservative cavity parameters (modal volumes ∼10 cubic wavelengths and quality factors ∼1000). The standard ManleyRowe efficiency limits are obtained from the solution of the classical coupled-mode equations, although we also derive them from simple photon-counting “quantum” arguments. Finally, using a linear stability analysis, we demonstrate that maximal conversion efficiency can be retained even in the presence of self- and cross-phase modulation effects that generally act to disrupt the resonance condition.

[1]  F Martelli,et al.  Liquid phantom for investigating light propagation through layered diffusive media. , 2004, Optics express.

[2]  R. Morandotti,et al.  Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures , 2008 .

[3]  Peter A. Andrekson,et al.  Fiber-based optical parametric amplifiers and their applications , 2002 .

[4]  Steven G. Johnson,et al.  Chi((2)) and Chi((3)) harmonic generation at a critical power in inhomogeneous doubly resonant cavities. , 2007, Optics express.

[5]  Masaya Notomi,et al.  Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip. , 2005, Optics letters.

[6]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[7]  J. H. Marburger,et al.  Theory of nonresonant multistable optical devices , 1976 .

[8]  Michal Lipson,et al.  Ultra-low power parametric frequency conversion in a silicon microring resonator. , 2008, Optics express.

[9]  Ling-An Wu,et al.  Squeezed states of light from an optical parametric oscillator , 1987 .

[10]  Steven G. Johnson,et al.  Optical bistability in axially modulated OmniGuide fibers. , 2003, Optics letters.

[11]  Shanhui Fan,et al.  Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities , 2004 .

[12]  Magnus Karlsson,et al.  Four-wave mixing in fibers with randomly varying zero-dispersion wavelength , 1998 .

[13]  P. Meystre,et al.  Optical bistability and mirror confinement induced by radiation pressure , 1983 .

[14]  T. Chikama,et al.  Compensation of chromatic dispersion in a single-mode fiber by optical phase conjugation , 1993, IEEE Photonics Technology Letters.

[15]  Liam O'Faolain,et al.  Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations. , 2011, Optics express.

[16]  Yuri Avetisyan,et al.  Cavity-enhanced terahertz region difference frequency generation in surface-emitting geometry , 1999, Optics & Photonics.

[17]  Fariba Hatami,et al.  Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities , 2010 .

[18]  N. Peyghambarian,et al.  Nonlinear photonics , 1990 .

[19]  G. D. Boyd,et al.  Resonant optical second harmonic generation and mixing , 1966 .

[20]  Proof of the Manley-Rowe relations from quantum considerations , 1965 .

[21]  H. Haus Waves and fields in optoelectronics , 1983 .

[22]  Alexander L. Gaeta,et al.  Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres , 2007 .

[23]  H. Hemmati,et al.  High power second harmonic generation of 257 nm radiation in an external ring cavity , 1982 .

[24]  L. Andreani,et al.  Highly efficient second-harmonic generation in doubly resonant planar microcavities , 2004 .

[25]  M. Soljačić,et al.  Low-threshold lasing action in photonic crystal slabs enabled by Fano resonances. , 2011, Optics express.

[26]  D J Moss,et al.  Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million. , 2009, Optics express.

[27]  J H Shapiro,et al.  Generation and detection of two-photon coherent states in degenerate four-wave mixing. , 1979, Optics letters.

[28]  Spatial four wave mixing in nonlinear periodic structures. , 2006, Physical review letters.

[29]  S. D. Gupta,et al.  Third harmonic generation in layered media in presence of optical bistability of the fundamental , 1998 .

[30]  A. Ferguson,et al.  Efficient generation of picosecond pulses at 243 nm , 1990 .

[31]  Andrew G. Glen,et al.  APPL , 2001 .

[32]  Steven G. Johnson,et al.  Evanescent-wave bonding between optical waveguides. , 2005, Optics letters.

[33]  Z. Ou,et al.  Enhanced conversion efficiency for harmonic generation with double resonance. , 1993, Optics letters.

[34]  C. Someda,et al.  Theory of slow light enhanced four-wave mixing in photonic crystal waveguides. , 2010, Optics express.

[35]  A. Shepherd,et al.  Semiconductors , 1967, Nature.

[36]  Steven G. Johnson,et al.  Enhanced nonlinear optics in photonic-crystal microcavities. , 2007, Optics express.

[37]  A. Arie,et al.  Photonic quasicrystals for nonlinear optical frequency conversion. , 2004, Physical review letters.

[38]  Yujie J. Ding,et al.  Cavity-enhanced and quasiphase-matched multi-order reflection-second-harmonic generation from GaAs/AlAs and GaAs/AlGaAs multilayers , 2001 .

[39]  K. Inoue Four-wave mixing in an optical fiber in the zero-dispersion wavelength region , 1992 .

[40]  Roberto Morandotti,et al.  Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide. , 2010, Optics express.

[41]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[42]  Steven G. Johnson,et al.  Design of an efficient terahertz source using triply resonant nonlinear photonic crystal cavities. , 2009, Optics express.

[43]  Craig Savage,et al.  Optical Chaos in Second-harmonic Generation , 1983 .

[44]  M. Bieler,et al.  THz Generation From Resonant Excitation of Semiconductor Nanostructures: Investigation of Second-Order Nonlinear Optical Effects , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[45]  I. Nefedov,et al.  Terahertz oscillator based on nonlinear frequency conversion in a double vertical cavity , 2005 .

[46]  Jeff F. Young,et al.  Optical bistability involving photonic crystal microcavities and Fano line shapes. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Chaos in second-harmonic generation of light. The case of a train of pulses , 1992 .

[48]  Marco Liscidini,et al.  Second-harmonic generation in doubly resonant microcavities with periodic dielectric mirrors. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Patrice Feron,et al.  Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation , 2006 .

[50]  Dmitry Strekalov,et al.  Naturally phase matched second harmonic generation in a whispering gallery mode resonator , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[51]  Shinozuka,et al.  Numerical method for colored-noise generation and its application to a bistable system. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[52]  Steven G. Johnson,et al.  Difference-frequency generation with quantum-limited efficiency in triply-resonant nonlinear cavities. , 2009, Optics express.

[53]  Physical Review , 1965, Nature.

[54]  Masaya Notomi,et al.  Optical bistable switching action of Si high-Q photonic-crystal nanocavities. , 2005, Optics express.

[55]  Stephen A. Maas,et al.  Nonlinear Microwave and RF Circuits , 2003 .

[56]  V. Berger,et al.  Second-harmonic generation in monolithic cavities , 1997 .

[57]  M. Fejer Nonlinear Optical Frequency Conversion , 1994 .

[58]  J. Carr,et al.  Self-oscillation and chaos in nonlinear fabry-perot resonators with finite response time , 1982 .

[59]  Nori Shibata,et al.  Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber , 1987 .

[60]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[61]  R. Morandotti,et al.  Random quasi-phase-matched second-harmonic generation in periodically poled lithium tantalate. , 2010, Optics letters.

[62]  K. Vahala,et al.  Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. , 2004, Physical review letters.

[63]  Chi‐Kuang Sun,et al.  2GHz repetition-rate femtosecond blue sources by second harmonic generation in a resonantly enhanced cavity , 2005 .

[64]  M. Soljačić,et al.  Efficient low-power terahertz generation via on-chip triply-resonant nonlinear frequency mixing , 2009, 0908.0472.

[65]  S. Schiller,et al.  1.1-W single-frequency 532-nm radiation by second-harmonic generation of a miniature Nd:YAG ring laser. , 1996, Optics letters.

[66]  Tobias J. Hagge,et al.  Physics , 1929, Nature.

[67]  Owen P. Leary,et al.  40: PATIENT-SPECIFIC PROGNOSTICATION AFTER TBI IS RELATED TO BLEED PHENOTYPE AND ANATOMIC LOCATION , 2006, Testament d'un patriote exécuté.

[68]  Shanhui Fan,et al.  High-contrast all-optical bistable switching in photonic crystal microcavities , 2003 .

[69]  Reid,et al.  Generation and detection of squeezed states of light by nondegenerate four-wave mixing in an optical fiber. , 1985, Physical review. A, General physics.

[70]  Lute Maleki,et al.  Nonlinear optics and crystalline whispering gallery mode cavities. , 2004, Physical review letters.

[71]  T. Wassmer 6 , 1900, EXILE.

[72]  Steven G. Johnson,et al.  Nonlinear harmonic generation and devices in doubly resonant Kerr cavities , 2008, 0808.3122.

[73]  Gerald T. Moore,et al.  Optical parametric oscillation with intracavity second-harmonic generation , 1995 .

[74]  Roberto Morandotti,et al.  All optical wavelength conversion in an integrated ring resonator , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[75]  N. Langford,et al.  Cavity-augmented frequency tripling of a continuous wave mode-locked laser , 2001 .

[76]  J. Feinberg,et al.  Self-pumped, continuous-wave phase conjugator using internal reflection. , 1982, Optics letters.

[77]  David J. Webb,et al.  Blue light generation by resonator‐enhanced frequency doubling of an extended‐cavity diode laser , 1994 .

[78]  Robert L. Byer,et al.  Optical parametric amplification , 1979 .

[79]  N. Bloembergen,et al.  Interactions between light waves in a nonlinear dielectric , 1962 .

[80]  E. Hagley,et al.  Four-wave mixing with matter waves , 1999, Nature.

[81]  M. Tabor Chaos and Integrability in Nonlinear Dynamics: An Introduction , 1989 .

[82]  Mertz,et al.  Observation of squeezed states generated by four-wave mixing in an optical cavity. , 1985, Physical review letters.

[83]  Shanhui Fan,et al.  Enhanced second-harmonic generation in AlGaAs/AlxOy tightly confining waveguides and resonant cavities. , 2006, Optics letters.

[84]  Yuan-Yao Lin,et al.  Coupled-wave theory for distributed-feedback optical parametric amplifiers and oscillators , 2004 .

[85]  Demetrios N. Christodoulides,et al.  Wave and defect dynamics in nonlinear photonic quasicrystals , 2006, Nature.

[86]  A. Bloom Quantum Electronics , 1972, Nature.

[87]  M. G. Martemyanov,et al.  Giant optical second-harmonic generation in single and coupled microcavities formed from one-dimensional photonic crystals , 2002 .

[88]  Roel Baets,et al.  Modeling second-harmonic generation by use of mode expansion , 2005 .

[89]  Chonghoon Kim,et al.  Traveling-wave optical parametric amplifier: investigation of its phase-sensitive and phase-insensitive gain response , 1997 .

[90]  G. J. Dixon,et al.  432-nm source based on efficient second-harmonic generation of GaAlAs diode-laser radiation in a self-locking external resonant cavity. , 1989, Optics letters.

[91]  N. Kravtsov,et al.  LETTERS TO THE EDITOR: Enhancement of the efficiency of second-harmonic generation in a microlaser , 2000 .

[92]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[93]  J. Hald Second harmonic generation in an external ring cavity with a Brewster-cut nonlinear crystal : theoretical considerations , 2001 .

[94]  Qianfan Xu,et al.  Carrier-induced optical bistability in silicon ring resonators. , 2006, Optics letters.

[95]  R A Wilson,et al.  Wavelength conversion in GaAs micro-ring resonators. , 2000, Optics letters.

[96]  A. Levine,et al.  New estimates of the storage permanence and ocean co-benefits of enhanced rock weathering , 2023, PNAS nexus.

[97]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[98]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[99]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[100]  H. Haus,et al.  Coupled-mode theory , 1991, Proc. IEEE.

[101]  Didier Felbacq,et al.  Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity , 2000 .

[102]  Collett,et al.  Two-photon-loss model of intracavity second-harmonic generation. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[103]  A. Locatelli,et al.  Self-pulsing and bistability in nonlinear Bragg gratings , 2007 .

[104]  K. McNeil,et al.  Non-equilibrium Transitions in Sub/second Harmonic Generation: II. Quantum Theory , 1980 .

[105]  H. Gibbs Optical Bistability Controlling Light With Light , 1985 .

[106]  R.W. Boyd,et al.  Enhanced nonlinear optical phase response of an AlGaAs microring resonator , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[107]  G. Agrawal Fiber‐Optic Communication Systems , 2021 .

[108]  R. Smith Theory of intracavity optical second-harmonic generation , 1970 .

[109]  Federico Capasso,et al.  Raman injection laser , 2005, Nature.

[110]  A. Hese,et al.  Enhancement of single frequency SGH in a passive ring resonator , 1981 .

[111]  M. Soljačić,et al.  Tailoring optical nonlinearities via the Purcell effect. , 2007, Physical Review Letters.

[112]  M. Lipson,et al.  Silicon-waveguide-coupled high-Q chalcogenide microspheres. , 2009, Optics express.

[113]  A. Ferguson,et al.  Intracavity second-harmonic generation in continuous-wave dye lasers , 1977 .