Water hammer with column separation : a review of research in the twentieth century

Column separation refers to the breaking of liquid columns in fully filled pipelines. This may occur in a water hammer event when the pressure drops to the vapor pressure at specific locations such as closed ends, high points or knees (changes in pipe slope). A vapor cavity, driven by the inertia of the parting liquid columns, will start to grow. The cavity acts as a vacuum, a low-pressure point, retarding the liquid columns, which finally starts to diminish in size when the liquid columns change flow direction. The collision of two liquid columns, or of one liquid column with a closed end, moving towards the shrinking cavity, may cause a large and nearly instantaneous rise in pressure. The large pressure rise travels through the entire pipeline and forms a severe load for hydraulic machinery, individual pipes and supporting structures. The situation is even worse: in one water- hammer event many repetitions of cavity formation and collapse may occur. This report reviews water-hammer-induced column-separation from the discovery of the phenomenon in the late 19th century, the recognition of its danger in the 1930s, the development of numerical methods in the 1960s and 1970s, to the standard models used in commercial software packages in the late 20th century. A comprehensive survey of laboratory tests and field measurements is given. The review focuses on transient vaporous cavitation. Gaseous cavitation and steam-condensation are beyond the scope of the report. There are more than 300 references cited in this review report.

[1]  P. R. Carmona A simplified procedure to evaluate liquid column separation phenomena , 1988 .

[2]  Wuqiang Yang,et al.  A capacitance tomographic system for the measurement of void fraction in transient cavitation , 1998 .

[3]  F. G. Hammitt,et al.  Cavitation and Multiphase Flow Phenomena , 1980 .

[4]  Tsunenori Kazama Column separation and waterhammer in binary mixture , 1983 .

[5]  E. Wylie,et al.  Characteristics Method Using Time‐Line Interpolations , 1983 .

[6]  J. A. Swaffield A Study of the Influence of Air Release on Column Separation in An Aviation Kerosine Pipeline , 1972 .

[7]  H. A. Luther,et al.  Applied numerical methods , 1969 .

[8]  P. Williams,et al.  On anomalously low values of the tensile strength of water , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  Victor L. Streeter Computer solution of surge problems , 1965 .

[10]  S. S. Chen,et al.  Flow-Induced Vibration of Circular Cylindrical Structures , 1987 .

[11]  Eiji Kasahara,et al.  Comparisons between Experimental and Theoretical Results of the Waterhammer with Water Column Separations , 1969 .

[12]  J. S. Stecki,et al.  Fluid transmission lines: distributed parameter models. I. A review of the state of the art. II. Comparison of models , 1986 .

[13]  E. B. Wylie,et al.  Towards an improved understanding waterhammer column separation in pipelines , 1989 .

[14]  H. H. Safwat,et al.  Experimental and Analytic Data Correlation Study of Water Column Separation , 1973 .

[15]  J. T. Kephart,et al.  Pressure Surges Following Water-Column Separation , 1961 .

[16]  R. Baltzer,et al.  A study of column separation accompanying transient flow of liquids in pipes , 1967 .

[17]  As Arris Tijsseling,et al.  The Response of Liquid-Filled Pipes to Vapour Cavity Collapse. , 1991 .

[18]  A. Tijsseling,et al.  A Precursor in Waterhammer Analysis - rediscovering Johannes von Kries. , 2004 .

[19]  C. B. Vreugdenhil,et al.  The Effect Of Dissolved Gas on Cavitation In Horizontal Pipe-Lines , 1969 .

[20]  Anton Bergant,et al.  Developments in pipeline column separation experimentation , 1994 .

[21]  Angus R. Simpson,et al.  Large water-hammer pressure for column separation in pipelines , 1991 .

[22]  B. Sharp Cavity Formation in Simple Pipes due to Rupture of the Water Column , 1960, Nature.

[23]  Martin F. Lambert,et al.  Parameters affecting water-hammer wave attenuation, shape and timing—Part 2: Case studies , 2008 .

[24]  Masaaki Shinada,et al.  Fluid Transient Phenomena Accociated with Column Separation in the Prefill Line of a Hydraulic Machine Press , 1989 .

[25]  D H Trevena,et al.  The influence of cavitation history and entrained gas on liquid tensile strength , 1984 .

[26]  Angus R. Simpson,et al.  Visualisation of transient cavitating flow in piping systems , 1996 .

[27]  R. Arndt Cavitation in Fluid Machinery and Hydraulic Structures , 1981 .

[28]  T. Takenaka,et al.  On the Transient Behavior of Oil Flow under Negative Pressure , 1985 .

[29]  A. K. Trikha,et al.  An Efficient Method for Simulating Frequency-Dependent Friction in Transient Liquid Flow , 1975 .

[30]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[31]  Christopher E. Brennen,et al.  The dynamic behavior and compliance of a stream of cavitating bubbles. , 1973 .

[32]  M. Plesset Tensile Strength of Liquids , 1969 .

[33]  Giles Brereton,et al.  Review of Recent Advances in the Study of Unsteady Turbulent Internal Flows , 1995 .

[34]  P. R. Williams,et al.  The tensile behaviour of elastic liquids under dynamic stressing , 2000 .

[35]  Mohand Kessal,et al.  Numerical simulation of transient vaporous and gaseous cavitation in pipelines , 2001 .

[36]  J. Frizell Pressures Resulting From Changes of Velocity of Water in Pipes , 1898 .

[37]  Glenn O. Brown The History of the Darcy-Weisbach Equation for Pipe Flow Resistance , 2002 .

[38]  H. H. Safwat,et al.  Transients in cooling water systems of thermal power plants , 1972 .

[39]  Satoshi Takahashi,et al.  Measurement of Transiently Changing Flow Rates in Oil Hydraulic Column Separation , 1996 .

[40]  Water Hammer in Hydraulic Pipe Lines , 2022, Nature.

[41]  W. Heath,et al.  Vapor cavity formation in a pipe after valve closure , 1962 .

[42]  A. Tijsseling Fluid-Structure Interaction in Case of Waterhammer with Cavitation , 1993 .

[43]  Toshio Takenaka Some Problems on Fluid Transient Phenomena , 1987 .

[44]  Kazushi Sanada,et al.  A Study on Analytical Methods by Classification of Column Separations in a Water Pipeline , 1990 .

[45]  T. Ichikawa,et al.  The Transient Characteristics of Oil Pipelines with Column Separation , 1976 .

[46]  Hanif M. Chaudhry,et al.  Applied Hydraulic Transients , 1979 .

[47]  Mehmet Yasar Gundogdu,et al.  Present State of Art on Pulsatile Flow Theory. Part 2. Turbulent Flow Regime. , 1999 .

[48]  A. Lai,et al.  Investigation of waterhammer in piping networks with voids containing non-condensable gas , 2000 .

[49]  Masaaki Shinada,et al.  Fluid Transient Phenomena Accompanied with Column Separation in Fluid Power Pipeline : 1st Report, On the Horizontal Pipeline Downstream of a Valve Instantaneously Closed , 1984 .

[50]  Angus R. Simpson,et al.  Pipeline column separation flow regimes , 1999 .

[51]  D H Trevena,et al.  Cavitation and the generation of tension in liquids , 1984 .

[52]  C. Brennen Cavitation and Bubble Dynamics , 1995 .

[53]  R. P. Riet,et al.  A computational method for the water hammer problem , 1964 .

[54]  Jacob N. Israelachvili,et al.  New Mechanism of Cavitation Damage , 1991, Science.

[55]  Taieb Lili,et al.  Transient flow of homogeneous gas‐liquid mixtures in pipelines , 1998 .

[56]  J. Paul Tullis,et al.  Air Release During Column Separation , 1983 .

[57]  Wen-Hsiung Li,et al.  Pressure Generated by Cavitation in a Pipe , 1964 .

[58]  William K. Blake,et al.  Mechanics of Flow‐Induced Sound and Vibration. Vol. I: General Concepts and Elementary Sources by William K. Blake , 1988 .

[59]  C. C. Bonin Water-Hammer Damage to Oigawa Power Station , 1960 .

[60]  A. H. Devries Hydraulic aspects of cooling water systems for thermal power plants , 1974 .

[61]  AS Arris Tijsseling,et al.  Fluid-Structure Interaction and Column Separation in a Closed Pipe , 1993 .

[62]  A. Prosperetti,et al.  On the characteristics of the equations of motion for a bubbly flow and the related problem of critical flow , 1976 .

[63]  E. Benjamin Wylie,et al.  Simulation of Vaporous and Gaseous Cavitation , 1984 .

[64]  As Arris Tijsseling,et al.  The concentrated cavity model validated by experiments in a closed tube , 1991 .

[65]  J. Siemons,et al.  The Phenomenon Of Cavitation In A Horizontal Pipe-Line Due To A Sudden Pump-Failure , 1967 .

[66]  Seiichi Washio,et al.  Creation and Observation of Tensile Waves in Oil Column , 1994 .

[67]  D. C. Wiggert,et al.  The Effect of Gaseous Cavitation on Fluid Transients , 1979 .

[68]  J. Nougaro,et al.  ÉTUDE THÉORIQUE ET EXPÉRIMENTALE DU FONCTIONNEMENT EN CHARGE DES CANAUX DE FUITE EN L'ABSENCE DE CHEMINÉE D'ÉQUILIBRE , 1953 .

[69]  V. K. Kedrinskii,et al.  Shock waves in a liquid containing gas bubbles , 1980 .

[70]  M. Greco,et al.  Effects of Two-Dimensionality on Pipe Transients Modeling , 1995 .

[71]  A. M. Binnie,et al.  Water Hammer in a Pumping Main and its Prevention , 1951 .

[72]  J. Vítkovský,et al.  Developments in unsteady pipe flow friction modelling , 2001 .

[73]  Masaaki Shinada,et al.  Fluid Transient Phenomena Associated with Column Separation in the Return Line of a Hydraulic Machine Press , 1987 .

[74]  Victor L. Streeter,et al.  An Investigation of the Effect of Cavitation Bubbles on the Momentum Loss in Transient Pipe Flow , 1971 .

[75]  C. S. Martin Status of Fluid Transients in Western Europe and the United Kingdom. Report on Laboratory Visits by Freeman Scholar , 1973 .

[76]  J. T. Howlett Applications of NASTRAN to Coupled Structural and Hydrodynamic Responses in Aircraft Hydraulic Systems , 1971 .

[77]  V. Streeter Water Hammer Analysis , 1969 .

[78]  J. A. Geurst Virtual mass in two-phase bubbly flow , 1985 .

[79]  Shengcai Li,et al.  Cavitation of hydraulic machinery , 2000 .

[80]  M. Mitosek,et al.  Study of cavitation due to water hammer in plastic pipes , 1997 .

[81]  Victor L. Streeter Transient Cavitating Pipe Flow , 1983 .

[82]  Robert W. Angus,et al.  Water Hammer in Pipes, Including Those Supplied by Centrifugal Pumps: Graphical Treatment , 1937 .

[83]  Jim C. P. Liou,et al.  Numerical Properties of the Discrete Gas Cavity Model for Transients , 2000 .

[84]  F. Fahy,et al.  Mechanics of flow-induced sound and vibration , 1989 .

[85]  J. P. Th. Kalkwijk,et al.  Cavitation in Horizontal Pipelines due to Water Hammer , 1973 .

[86]  Jian-Jun Shu A Finite Element Model and Electronic Analogue of Pipeline Pressure Transients With Frequency-Dependent Friction , 2003 .

[87]  R. A. Huber,et al.  On the collapse of water vapour cavities in a bubble analogue apparatus , 1970 .

[88]  M Mitosek Study of Transient Vapor Cavitation in Series Pipe Systems , 2000 .

[89]  M. Gundogdu,et al.  Present State of Art on Pulsatile Flow Theory : Part 1:Laminar and Transitional Flow Regimes , 1999 .

[90]  A Anderson,et al.  Menabrea's Note on Waterhammer: 1858 , 1976 .

[91]  A. Vliegenthart The Shuman filtering operator and the numerical computation of shock waves , 1970 .

[92]  Katsuine Tabei,et al.  Study of Cavitation Light Emission Generated by a Waterhammer , 2003 .

[93]  A. Tijsseling,et al.  Fluid transients and fluid-structure interaction in flexible liquid-filled piping , 2001 .

[94]  Chintu Lai,et al.  A study of waterhammer including effect of hydraulic losses , 1961 .

[95]  Charles Jaeger,et al.  Fluid transients in hydro-electric engineering practice , 1977 .

[96]  Selocted Bibfiography,et al.  Selected bibliography , 1979, Pain.

[97]  Hemmat H. Safwat Photographic Study of Water Column Separation , 1972 .

[98]  J S Stecki,et al.  Fluid Transmission Lines—Distributed Parameter Models Part 1: A Review of the State of the Art , 1986 .

[99]  Norman R. Gibson,et al.  Pressures in Penstocks Caused by the Gradual Closing of Turbine Gates , 1919 .

[100]  H. D. Giesecke Calculation of piping response to fluid transients including effects of fluid/structure interaction , 1981 .

[101]  C. Kranenburg,et al.  Gas Release During Transient Cavitation in Pipes , 1974 .

[102]  H. Rouse,et al.  History of hydraulics , 1980 .

[103]  G. A. Provoost Discrete Gas Model to Represent Distributed Free Gas in liquids , 1981 .

[104]  Eiji Kasahara,et al.  Analysis of the Waterhammer with Water Column Separation , 1968 .

[105]  Martin F. Lambert,et al.  Parameters affecting water-hammer wave attenuation, shape and timing—Part 1: Mathematical tools , 2008 .

[106]  Chintu Lai,et al.  Water-Hammer Analysis Including Fluid Friction , 1962 .

[107]  Angus R. Simpson,et al.  Numerical Comparison of Pipe-Column-Separation Models , 1994 .

[108]  Jean-Pierre Franc,et al.  Analyse expérimentale des pressions statique et dynamique dans la zone de fermeture d’une poche de cavitation partielle , 1989 .

[109]  P. R. Williams,et al.  On the tensile strength of water under pulsed dynamic stressing , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[110]  M. R. Carstens,et al.  Boundary-Shear Stress in Unsteady Turbulent Pipe Flow , 1959 .

[111]  W. T. Rouleau,et al.  The Effect of Viscous Shear on Transients in Liquid Lines , 1967 .

[112]  As Arris Tijsseling,et al.  FLUID-STRUCTURE INTERACTION AND CAVITATION IN A SINGLE-ELBOW PIPE SYSTEM , 1996 .

[113]  E. B. Wylie,et al.  Hydraulic Transients Caused by Reciprocating Pumps , 1967 .

[114]  Yoichiro Matsumoto,et al.  Water column separation in a straight draft tube , 1999 .

[115]  D H Trevena,et al.  Cavitation and Tension in Liquids , 1987 .

[116]  C. A. Kot,et al.  Transient cavitation effects in fluid piping systems , 1978 .

[117]  Angus R. Simpson,et al.  Interesting lessons from column separation experiments , 1996 .

[118]  M. R. Carstens,et al.  Water Hammer Resulting from Cavitating Pumps , 1964 .

[119]  E. Benjamin Wylie,et al.  Fluid Transients in Systems , 1993 .

[120]  Wen-Hsiung Li Mechanics of Pipe Flow Following Column Separation , 1962 .

[121]  As Arris Tijsseling,et al.  FLUID-STRUCTURE INTERACTION IN LIQUID- FILLED PIPE SYSTEMS : A REVIEW , 1996 .

[122]  W. Zielke Frequency dependent friction in transient pipe flow , 1968 .

[123]  J. A. Fox,et al.  Transient flow in pipes, open channels, and sewers , 1989 .

[124]  Willi H. Hager,et al.  Swiss contribution to water hammer theory , 2001 .

[125]  G. Wallis One Dimensional Two-Phase Flow , 1969 .

[126]  R. A. Baltzer,et al.  Column Separation Accompanying Liquid Transients in Pipes , 1967 .

[127]  Cornelis Kranenburg Transient cavitation in pipelines , 1974 .

[128]  V. K. Kedrinskii,et al.  On the dynamics of cavity clusters , 1982 .

[129]  Roger E. A. Arndt,et al.  Preliminary Investigation of the Use of Air Injection to Mitigate Cavitation Erosion , 1993 .

[130]  V. L. Streeter Unsteady Flow Calculations by Numerical Methods , 1972 .

[131]  R. J. Brown,et al.  Water-Column Separation at Two Pumping Plants , 1968 .

[132]  Masaaki Shinada,et al.  Influence of Gas Diffusion on Fluid Transient Phenomena Associated with Column Separation Generated during Decompression Operation , 1994 .

[133]  Angus R. Simpson,et al.  Problems encountered in modeling vapor column separation , 1985 .

[134]  I. S. Pearsall,et al.  Paper 2: The Velocity of Water Hammer Waves , 1965 .

[135]  J. A. Swaffield Paper 24: A Study of Column Separation following Valve Closure in a Pipeline Carrying Aviation Kerosine , 1969 .

[136]  Enrique Cabrera Marcet,et al.  HYDRAULIC TRANSIENTS WITH WATER COLUMN SEPARATION , 1992 .

[137]  Angus R. Simpson,et al.  Cavitation inception in pipeline column separation , 1999 .

[138]  A. Tijsseling,et al.  Fluid-Structure Interaction With Cavitation in Transient Pipe Flows , 1992 .

[139]  R. E. Schwirian,et al.  Methods for simulating fluid-structure interaction and cavitation with existing finite element formulations , 1982 .