Performance Evaluation of a M/Geo[xy]/1 Queue with varying probabilities of success which Treats Two Like Jobs As a Single Entity

[1]  Kim Sung-Jin,et al.  Busy Period Analysis for the Discrete-time GI/Geo/1 Queue with Multiple Vacations , 2015 .

[2]  Jean-Bernard Baillon,et al.  On the asymptotic behaviour of M/G/1 retrial queues with batch arrivals and impatience phenomenon , 2012, Math. Comput. Model..

[3]  Fabrice Guillemin,et al.  Excursions of the workload process in G/GI/1 queues , 1995 .

[4]  Mohan L. Chaudhry,et al.  The use of the distributional Little's law in the computational analysis of discrete-time GI/G/1 and GI/D/c queues , 2008, Perform. Evaluation.

[5]  Na Li,et al.  Multi-server accumulating priority queues with heterogeneous servers , 2016, Eur. J. Oper. Res..

[6]  H. Li,et al.  Steady-state queue size distribution of discrete-time PH/Geo/1 retrial queues , 1999 .

[7]  Herwig Bruneel,et al.  A discrete-time queue with customers with geometric deadlines , 2015, Perform. Evaluation.

[8]  Dae-Eun Lim,et al.  Queue Length and Busy Period Analysis for the M/G/1 Queue with Negative Arrivals , 2015 .

[9]  David A. Stanford,et al.  Observing general service queues before joining , 1996, Oper. Res. Lett..

[10]  Richard J. Boucherie,et al.  Decomposing the queue length distribution of processor-sharing models into queue lengths of permanent customer queues , 2005, Perform. Evaluation.

[11]  Won Seok Yang,et al.  Geo/G/1 queues with disasters and general repair times , 2011 .

[12]  Herwig Bruneel,et al.  Discrete-time multiserver queues with geometric service times , 2004, Comput. Oper. Res..