Computational Social Choice and challenges оf voting in multi-agent systems

The presence of big data, online systems, collaborations of remote agents, distributed knowledge, social media interaction, and generally, digital globalization, changes the way how people make decisions, and especially those of collective importance. We face numerous challenges of human and algorithm voting in multi-agent socio-technical environments. Computational Social Choice (COMSOC) has the tendency to join several separately studied fields. The author summarizes recent efforts that testify the importance of COMSOC and voting. This paper gives insights into the nature of voting in multi-agent systems (MAS) and related challenges, from both computational and social aspects. With respect to the challenging aspects of voting and specifics of MAS, the following directions for future research in the field of COMSOC are suggested: an integrated approach to voting, iterative voting, a voting argumentation framework, and combinatorial voting.

[1]  Jorge M. Fernandes,et al.  The impact of candidate selection rules and electoral vulnerability on legislative behaviour in comparative perspective , 2019, European Journal of Political Research.

[2]  Ariel D. Procaccia,et al.  Junta Distributions and the Average-Case Complexity of Manipulating Elections , 2007, J. Artif. Intell. Res..

[3]  S. Hobolt,et al.  The Brexit vote: a divided nation, a divided continent , 2016 .

[4]  Nicholas R. Miller Reflections on Arrow’s theorem and voting rules , 2019 .

[5]  Madalina Croitoru,et al.  A decision-making approach where argumentation added value tackles social choice deficiencies , 2019, Progress in Artificial Intelligence.

[6]  Ian P. McCarthy,et al.  How to Work a Crowd: Developing Crowd Capital Through Crowdsourcing , 2014, ArXiv.

[7]  A. Sen Collective Choice and Social Welfare: An Expanded Edition , 2017 .

[8]  Ulrich Endriss Computational Social Choice: Prospects and Challenges , 2011, FET.

[9]  Francesca Rossi Preferences, Constraints, Uncertainty, and Multi-Agent Scenarios , 2008, ISAIM.

[10]  Vincent Conitzer,et al.  Computational voting theory: game-theoretic and combinatorial aspects , 2011 .

[11]  Tim Miller,et al.  Explanation in Artificial Intelligence: Insights from the Social Sciences , 2017, Artif. Intell..

[12]  Laura B. Stephenson,et al.  The EuroVotePlus experiment , 2015 .

[13]  Sharad Goel,et al.  The Measure and Mismeasure of Fairness: A Critical Review of Fair Machine Learning , 2018, ArXiv.

[14]  Fatima Talib,et al.  Computational aspects of voting: a literature survey , 2007 .

[15]  J. V. Rauff,et al.  Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence , 2005 .

[16]  F. Brandt,et al.  Computational Social Choice: Prospects and Challenges , 2011, FET.

[17]  Wei Lu Computational social influence : models, algorithms, and applications , 2016 .

[18]  Lirong Xia,et al.  Voting in Combinatorial Domains , 2016, Handbook of Computational Social Choice.

[19]  Joel Z. Leibo,et al.  Multi-agent Reinforcement Learning in Sequential Social Dilemmas , 2017, AAMAS.

[20]  Y. Narahari,et al.  Complexity of Manipulation with Partial Information in Voting , 2016, IJCAI.

[21]  P. Jean-Jacques Herings,et al.  The Condorcet paradox revisited , 2010, Social Choice and Welfare.

[22]  Alexander Artikis,et al.  Specifying and Executing Open Multi-agent Systems , 2016 .

[23]  Alex Pentland,et al.  Fair, Transparent, and Accountable Algorithmic Decision-making Processes , 2017, Philosophy & Technology.

[24]  Vincent Conitzer,et al.  Barriers to Manipulation in Voting , 2016, Handbook of Computational Social Choice.

[25]  Harith Alani,et al.  Collective intelligence for promoting changes in behaviour: a case study on energy conservation , 2017, AI & SOCIETY.

[26]  Gabrielle Lynch,et al.  Digital dilemmas: the unintended consequences of election technology , 2018, Democratization.

[27]  F. Willekens,et al.  Decision-Making in Agent-Based Models of Migration: State of the Art and Challenges , 2016, European Journal of Population.

[28]  Fernando A. Tohmé,et al.  Collective argumentation: A survey of aggregation issues around argumentation frameworks , 2017, Argument Comput..

[29]  Christos Kaklamanis,et al.  A Voting Argumentation Framework: Considering the Reasoning behind Preferences , 2019, ICAART.

[30]  Elliot Anshelevich,et al.  Randomized Social Choice Functions under Metric Preferences , 2015, IJCAI.

[31]  Joëlle Pianzola,et al.  Selection biases in Voting Advice Application research , 2014 .

[32]  Feng Hao,et al.  A Smart Contract for Boardroom Voting with Maximum Voter Privacy , 2017, IACR Cryptol. ePrint Arch..

[33]  Robert J. Kauffman,et al.  Understanding the paradigm shift to computational social science in the presence of big data , 2014, Decis. Support Syst..

[34]  Paulo Carreira,et al.  Can HVAC really learn from users? A simulation-based study on the effectiveness of voting for comfort and energy use optimization , 2018, Sustainable Cities and Society.

[35]  Ildikó Schlotter,et al.  Having a Hard Time? Explore Parameterized Complexity! , 2017 .

[36]  Yiru Zhang,et al.  Preference fusion and Condorcet's paradox under uncertainty , 2017, 2017 20th International Conference on Information Fusion (Fusion).

[37]  Piotr Faliszewski,et al.  Parameterized Algorithmics for Computational Social Choice: Nine Research Challenges , 2014, ArXiv.

[38]  Luis Sánchez Fernández,et al.  Monotonicity axioms in approval-based multi-winner voting rules , 2017, AAMAS.

[39]  Ariel D. Procaccia,et al.  Liquid Democracy: An Algorithmic Perspective , 2018, AAAI.

[40]  Shui Yu,et al.  Big Privacy: Challenges and Opportunities of Privacy Study in the Age of Big Data , 2016, IEEE Access.

[41]  R. Kitchin,et al.  Thinking critically about and researching algorithms , 2014, The Social Power of Algorithms.

[42]  Markum Reed Social network influence on consistent choice , 2015 .

[43]  Christophe Le Page,et al.  Using agent-based modelling to simulate social-ecological systems across scales , 2019, GeoInformatica.

[44]  Jiehua Chen,et al.  Exploiting structure in computationally hard voting problems , 2016 .

[45]  Friederike Funk,et al.  Social attributions from faces bias human choices , 2014, Trends in Cognitive Sciences.

[46]  Y. Narahari,et al.  Frugal bribery in voting , 2017, Theor. Comput. Sci..

[47]  Toby Walsh,et al.  A Short Introduction to Preferences: Between AI and Social Choice , 2011 .

[48]  Filipo Studzinski Perotto,et al.  Learning Agents for Iterative Voting , 2017, ADT.

[49]  Daniel M. Oppenheimer,et al.  VAMP (Voting Agent Model of Preferences): A computational model of individual multi-attribute choice , 2019, Cognition.

[50]  Sophie Bade,et al.  Gibbard-Satterthwaite Success Stories and Obvious Strategyproofness , 2016, EC.

[51]  Omer Lev,et al.  Convergence and Quality of Iterative Voting under Non-Scoring Rules: (Extended Abstract) , 2016, AAMAS.

[52]  João Cancela,et al.  Explaining voter turnout: A meta-analysis of national and subnational elections , 2016 .

[53]  Salvador Barberà,et al.  Sequential voting and agenda manipulation , 2017 .

[54]  Umberto Grandi,et al.  Agent-Mediated Social Choice , 2018, The Future of Economic Design.

[55]  Francesca Rossi,et al.  Multi-agent soft constraint aggregation via sequential voting: theoretical and experimental results , 2018, Autonomous Agents and Multi-Agent Systems.

[56]  Jérôme Lang,et al.  Voting procedures with incomplete preferences , 2005 .

[57]  P. Hutchings,et al.  Prejudice and the Brexit vote: a tangled web , 2019, Palgrave Communications.

[58]  Ariel D. Procaccia,et al.  Junta distributions and the average-case complexity of manipulating elections , 2006, AAMAS '06.

[59]  Vincent Conitzer,et al.  Introduction to Computational Social Choice , 2016, Handbook of Computational Social Choice.

[60]  J. N. Islam,et al.  Methods of voting system and manipulation of voting , 2010 .

[61]  Marc Vorsatz,et al.  Approval Voting on Dichotomous Preferences , 2006, Soc. Choice Welf..

[62]  Ravi Kumar,et al.  On the Relevance of Irrelevant Alternatives , 2016, WWW.