In quest of a systematic framework for unifying and defining nanoscience

This article proposes a systematic framework for unifying and defining nanoscience based on historic first principles and step logic that led to a “central paradigm” (i.e., unifying framework) for traditional elemental/small-molecule chemistry. As such, a Nanomaterials classification roadmap is proposed, which divides all nanomatter into Category I: discrete, well-defined and Category II: statistical, undefined nanoparticles. We consider only Category I, well-defined nanoparticles which are >90% monodisperse as a function of Critical Nanoscale Design Parameters (CNDPs) defined according to: (a) size, (b) shape, (c) surface chemistry, (d) flexibility, and (e) elemental composition. Classified as either hard (H) (i.e., inorganic-based) or soft (S) (i.e., organic-based) categories, these nanoparticles were found to manifest pervasive atom mimicry features that included: (1) a dominance of zero-dimensional (0D) core–shell nanoarchitectures, (2) the ability to self-assemble or chemically bond as discrete, quantized nanounits, and (3) exhibited well-defined nanoscale valencies and stoichiometries reminiscent of atom-based elements. These discrete nanoparticle categories are referred to as hard or soft particle nanoelements. Many examples describing chemical bonding/assembly of these nanoelements have been reported in the literature. We refer to these hard:hard (H-n:H-n), soft:soft (S-n:S-n), or hard:soft (H-n:S-n) nanoelement combinations as nanocompounds. Due to their quantized features, many nanoelement and nanocompound categories are reported to exhibit well-defined nanoperiodic property patterns. These periodic property patterns are dependent on their quantized nanofeatures (CNDPs) and dramatically influence intrinsic physicochemical properties (i.e., melting points, reactivity/self-assembly, sterics, and nanoencapsulation), as well as important functional/performance properties (i.e., magnetic, photonic, electronic, and toxicologic properties). We propose this perspective as a modest first step toward more clearly defining synthetic nanochemistry as well as providing a systematic framework for unifying nanoscience. With further progress, one should anticipate the evolution of future nanoperiodic table(s) suitable for predicting important risk/benefit boundaries in the field of nanoscience.

[1]  André C. Arsenault,et al.  Nanochemistry: A Chemical Approach to Nanomaterials , 2005 .

[2]  Stephen Mann,et al.  Controlled synthesis of inorganic materials using supramolecular assemblies , 1991 .

[3]  T. Brown,et al.  Magnetic resonance imaging of major histocompatibility class II expression in the renal medulla using immunotargeted superparamagnetic iron oxide nanoparticles. , 2008, ACS nano.

[4]  I. Moiseev,et al.  Giant palladium clusters: synthesis and characterization , 1991 .

[5]  Xiaogang Peng,et al.  Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes: superior chemical, photochemical and thermal stability. , 2003, Journal of the American Chemical Society.

[6]  J. Baker,et al.  Dendrimer-based BH3 conjugate that targets human carcinoma cells. , 2007, Biomacromolecules.

[7]  M. Glodde,et al.  Transformation of a spherical supramolecular dendrimer into a pyramidal columnar supramolecular dendrimer mediated by the fluorophobic effect. , 2003, Angewandte Chemie.

[8]  E. Gillies,et al.  Surface functionalization of nanomaterials with dendritic groups: toward enhanced binding to biological targets. , 2009, Journal of the American Chemical Society.

[9]  Xiangyang Shi,et al.  HPLC separation of different generations of poly(amidoamine) dendrimers modified with various terminal groups. , 2005, Analytical chemistry.

[10]  David K. Smith,et al.  Dendron-stabilised gold nanoparticles: generation dependence of core size and thermal stability , 2004 .

[11]  A. Caminade,et al.  Organic nanodots for multiphotonics: synthesis and photophysical studies , 2007 .

[12]  Holy,et al.  Self-organized growth of three- dimensional quantum-Dot crystals with fcc-like stacking and a tunable lattice constant , 1998, Science.

[13]  S. O’Brien,et al.  Comparison and Stability of CdSe Nanocrystals Covered with Amphiphilic Poly(Amidoamine) Dendrimers , 2002 .

[14]  D. Tomalia Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry , 2005 .

[15]  M. Damha,et al.  Synthesis and spectroscopic analysis of branched RNA fragments: messenger RNA splicing intermediates , 1988 .

[16]  R. Krupke,et al.  Separation Techniques for Carbon Nanotubes , 2005 .

[17]  John V Frangioni,et al.  Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. , 2006, Journal of the American Chemical Society.

[18]  Jean M. J. Fréchet,et al.  Dendrimers and other dendritic polymers , 2001 .

[19]  Trevor Douglas,et al.  Host–guest encapsulation of materials by assembled virus protein cages , 1998, Nature.

[20]  C. R. Middaugh,et al.  Structure/function relationships of polyamidoamine/DNA dendrimers as gene delivery vehicles. , 2005, Journal of pharmaceutical sciences.

[21]  K.-S. Cho,et al.  Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots , 2003, Nature.

[22]  Christopher J. Kiely,et al.  Ordered Colloidal Nanoalloys , 2000 .

[23]  C. Hawker,et al.  Dendritic fullerenes; a new approach to polymer modification of C60 , 1994 .

[24]  G. Rivas,et al.  Adsorption and Detection of DNA Dendrimers at Carbon Electrodes , 1998 .

[25]  M. Terrones,et al.  Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. , 2006, Nano letters.

[26]  J. Fréchet,et al.  Dendrimers and Other Dendritic Polymers: Frechet/Dendrimers , 2001 .

[27]  H. Vali,et al.  Cadmium sulphide quantum dots in morphologically tunable triblock copolymer aggregates. , 2005, Journal of the American Chemical Society.

[28]  Ke-Xin Zhang,et al.  Shape effects of nanoparticles conjugated with cell-penetrating peptides (HIV Tat PTD) on CHO cell uptake. , 2008, Bioconjugate chemistry.

[29]  Lajos P. Balogh,et al.  Poly(Amidoamine) Dendrimer-Templated Nanocomposites. 1. Synthesis of Zerovalent Copper Nanoclusters , 1998 .

[30]  W. Deen What determines glomerular capillary permeability? , 2004, The Journal of clinical investigation.

[31]  David J. Wales,et al.  Structure, Dynamics, and Thermodynamics of Clusters: Tales from Topographic Potential Surfaces , 1996, Science.

[32]  Dar-Bin Shieh,et al.  Nanoshell Magnetic Resonance Imaging Contrast Agents , 2007, 2007 Digest of papers Microprocesses and Nanotechnology.

[33]  D. Tomalia,et al.  Core–Shell Tecto(dendrimers): I. Synthesis and Characterization of Saturated Shell Models , 2000 .

[34]  I. Majoros,et al.  HPLC analysis of PAMAM dendrimer based multifunctional devices. , 2005, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[35]  James R. Dewald,et al.  A New Class of Polymers: Starburst-Dendritic Macromolecules , 1985 .

[36]  Thommey P. Thomas,et al.  Synthesis and functional evaluation of DNA-assembled polyamidoamine dendrimer clusters for cancer cell-specific targeting. , 2005, Chemistry & biology.

[37]  Ande Bao,et al.  Dynamic Imaging of Functionalized Multi‐Walled Carbon Nanotube Systemic Circulation and Urinary Excretion , 2008 .

[38]  P C Lauterbur,et al.  Dendrimer‐based metal chelates: A new class of magnetic resonance imaging contrast agents , 1994, Magnetic resonance in medicine.

[39]  B. Hwang,et al.  Architecture of Pd-Au bimetallic nanoparticles in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles as investigated by X-ray absorption spectroscopy. , 2007, ACS nano.

[40]  Chad A. Mirkin,et al.  DNA-Directed Synthesis of Binary Nanoparticle Network Materials , 1998 .

[41]  H. Weller Colloidal Semiconductor Q‐Particles: Chemistry in the Transition Region Between Solid State and Molecules , 1993 .

[42]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[43]  Schmid,et al.  Naked Au55 clusters: dramatic effect of a thiol-terminated dendrimer , 2000, Chemistry.

[44]  P. Perriat,et al.  Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. , 2007, Journal of the American Chemical Society.

[45]  H. Hori,et al.  ESR study on palladium nanoparticles , 1997 .

[46]  V. Catalano,et al.  REVERSIBLE C60 BINDING TO DENDRIMER-CONTAINING IR(CO)CL(PPH2R)2 COMPLEXES , 1997 .

[47]  A. Alivisatos,et al.  Quasi‐ternary Nanoparticle Superlattices Through Nanoparticle Design , 2007 .

[48]  Christopher B. Murray,et al.  Structural diversity in binary nanoparticle superlattices , 2006, Nature.

[49]  R. Valluzzi,et al.  Formation of Silver and Gold Dendrimer Nanocomposites , 1999 .

[50]  Pin Wang,et al.  Site-specific labeling of enveloped viruses with quantum dots for single virus tracking. , 2008, ACS nano.

[51]  George G Malliaras,et al.  Suppression of Metallic Conductivity of Single-Walled Carbon Nanotubes by Cycloaddition Reactions , 2009, Science.

[52]  Kwok-Fai So,et al.  Nano hemostat solution: immediate hemostasis at the nanoscale. , 2006, Nanomedicine : nanotechnology, biology, and medicine.

[53]  Xiangyang Shi,et al.  CE of poly(amidoamine) succinamic acid dendrimers using a poly(vinyl alcohol)‐coated capillary , 2008, Electrophoresis.

[54]  Warren C W Chan,et al.  Nanoparticle-mediated cellular response is size-dependent. , 2008, Nature nanotechnology.

[55]  Cengiz S. Ozkan,et al.  Covalent Coupling of Quantum Dots to Multiwalled Carbon Nanotubes for Electronic Device Applications , 2003 .

[56]  J. T. Mayo,et al.  Low-Field Magnetic Separation of Monodisperse Fe3O4 Nanocrystals , 2006, Science.

[57]  Andrzej T Galecki,et al.  Prevention of influenza pneumonitis by sialic Acid-conjugated dendritic polymers. , 2002, The Journal of infectious diseases.

[58]  K. Klabunde,et al.  Nanoscale materials in chemistry , 2001 .

[59]  J. Vela,et al.  "Giant" multishell CdSe nanocrystal quantum dots with suppressed blinking. , 2008, Journal of the American Chemical Society.

[60]  Donald A. Tomalia,et al.  Designed Dendrimer Syntheses by Self-Assembly of Single-Site, ssDNA Functionalized Dendrons , 2004 .

[61]  J. V. Sanders,et al.  Ordered arrangements of spheres of two different sizes in opal , 1978, Nature.

[62]  E. Giralt,et al.  Peptide and amide bond-containing dendrimers. , 2005, Chemical reviews.

[63]  G. Schmid,et al.  Novel Modifications of Gold, Rhodium, and Ruthenium—M13 Clusters as Building Blocks of “Superclusters” , 1986 .

[64]  K. Johnsson,et al.  A designed protein for the specific and covalent heteroconjugation of biomolecules. , 2008, Bioconjugate chemistry.

[65]  Sanjiv S Gambhir,et al.  Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. , 2006, Nano letters.

[66]  Jing Li,et al.  Dendrimers as reactive modules for the synthesis of new structure-controlled, higher-complexity megamers , 2000 .

[67]  A. Caminade,et al.  Giant dendrimer-like particles from nanolatexes. , 2004, Chemical communications.

[68]  Xinguo Jiang,et al.  Quantum dots bearing lectin-functionalized nanoparticles as a platform for in vivo brain imaging. , 2008, Bioconjugate chemistry.

[69]  Pedro Gómez-Romero,et al.  Functional Hybrid Materials , 2004 .

[70]  Olli Ikkala,et al.  Precisely defined protein-polymer conjugates: construction of synthetic DNA binding domains on proteins by using multivalent dendrons. , 2007, ACS nano.

[71]  Stanislaus S. Wong,et al.  Routes towards separating metallic and semiconducting nanotubes. , 2005, Journal of nanoscience and nanotechnology.

[72]  D. Tomalia,et al.  Poly(ether) dendrons possessing phosphine focal points for stabilization and reduced quenching of luminescent quantum dots , 2006 .

[73]  Goran Ungar,et al.  Direct Visualization of Individual Cylindrical and Spherical Supramolecular Dendrimers , 1997 .

[74]  Philip S Lukeman,et al.  Nucleic acid nanostructures: bottom-up control of geometry on the nanoscale , 2005, Reports on progress in physics. Physical Society.

[75]  Kai Chen,et al.  InAs/InP/ZnSe core/shell/shell quantum dots as near-infrared emitters: Bright, narrow-band, non-cadmium containing, and biocompatible , 2008, Nano research.

[76]  Thommey P. Thomas,et al.  In vitro targeting of synthesized antibody-conjugated dendrimer nanoparticles. , 2004, Biomacromolecules.

[77]  Kostas Kostarelos,et al.  The long and short of carbon nanotube toxicity , 2008, Nature Biotechnology.

[78]  Bing Xu,et al.  Heterodimers of nanoparticles: formation at a liquid-liquid interface and particle-specific surface modification by functional molecules. , 2005, Journal of the American Chemical Society.

[79]  Martin W. Brechbiel,et al.  Dendrimer-based macromolecular MRI contrast agents: characteristics and application. , 2003 .

[80]  S. Kannan,et al.  Synthesis, characterization, and in vitro activity of dendrimer-streptokinase conjugates. , 2007, Bioconjugate chemistry.

[81]  D. Tomalia,et al.  Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. , 2007, Biochemical Society transactions.

[82]  Bradford G. Orr,et al.  Tapping Mode Atomic Force Microscopy Investigation of Poly(amidoamine) Core−Shell Tecto(dendrimers) Using Carbon Nanoprobes , 2002 .

[83]  H. Petek,et al.  Atomlike, Hollow-Core–Bound Molecular Orbitals of C60 , 2008, Science.

[84]  P. Singh Dendrimer‐Based Biological Reagents: Preparation and Applications in Diagnostics , 2002 .

[85]  J. Wilcoxon,et al.  Synthesis, structure and properties of metal nanoclusters. , 2006, Chemical Society reviews.

[86]  Francesco Stellacci,et al.  Divalent Metal Nanoparticles , 2007, Science.

[87]  S. Jockusch,et al.  Comparison of Nitrogen Core and Ethylenediamine Core Starburst Dendrimers through Photochemical and Spectroscopic Probes , 1999 .

[88]  Donald A. Tomalia,et al.  Unique steric and geometry induced stoichiometries observed in the divergent synthesis of poly(ester-acrylate/amine) (PEA) dendrimers , 2007 .

[89]  T. Minko,et al.  Internally cationic polyamidoamine PAMAM-OH dendrimers for siRNA delivery: effect of the degree of quaternization and cancer targeting. , 2009, Biomacromolecules.

[90]  Naomi J Halas,et al.  Fluorescence enhancement by Au nanostructures: nanoshells and nanorods. , 2009, ACS nano.

[91]  Mihail C. Roco,et al.  Possibilities for global governance of converging technologies , 2020, Emerging Technologies: Ethics, Law and Governance.

[92]  P. Anderson More is different. , 1972, Science.

[93]  V. Rotello,et al.  Direct control of the magnetic interaction between iron oxide nanoparticles through dendrimer-mediated self-assembly. , 2005, Journal of the American Chemical Society.

[94]  Lajos P. Balogh,et al.  Dendrimer−Silver Complexes and Nanocomposites as Antimicrobial Agents , 2001 .

[95]  E. W. Meijer,et al.  Dendrimers and magnetic resonance imaging , 2007 .

[96]  G. Schmid Metal clusters and cluster metals , 1988 .

[97]  Jeffery E. Raymond,et al.  Facile synthesis of tin oxide nanoparticles stabilized by dendritic polymers. , 2006, Journal of the American Chemical Society.

[98]  J. Tam,et al.  Synthesis of Peptide Dendrimer , 1994 .

[99]  M. Fox,et al.  Metal-core--organic shell dendrimers as unimolecular micelles. , 2003, Journal of the American Chemical Society.

[100]  H. Horinouchi,et al.  Structure, photophysical property, and cytotoxicity of human serum albumin complexed with tris(dicarboxymethylene)[60]fullerene. , 2008, Bioconjugate chemistry.

[101]  Tymish Y. Ohulchanskyy,et al.  A general approach to binary and ternary hybrid nanocrystals. , 2006, Nano letters.

[102]  N. Seeman DNA nanotechnology: novel DNA constructions. , 1998, Annual review of biophysics and biomolecular structure.

[103]  Marc D. Porter,et al.  Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as a Function of Core Size , 1998 .

[104]  C. R. Mayer,et al.  Covalent Hybrid Materials Based on Nanolatex Particles and Dawson Polyoxometalates , 2005 .

[105]  James E. Martin,et al.  Size Distributions of Gold Nanoclusters Studied by Liquid Chromatography , 2000 .

[106]  V. Percec,et al.  Rational Design of the First Nonspherical Dendrimer Which Displays Calamitic Nematic and Smectic Thermotropic Liquid Crystalline Phases , 1995 .

[107]  Sung Yong Park,et al.  DNA-programmable nanoparticle crystallization , 2008, Nature.

[108]  V. Rotello,et al.  Nanoparticle-templated assembly of viral protein cages. , 2006, Nano letters.

[109]  J. Charlier,et al.  Defects in carbon nanotubes. , 2002, Accounts of chemical research.

[110]  D. Tomalia,et al.  Dendronization of gold and CdSe/cdS (core–shell) quantum dots with tomalia type, thiol core, functionalized poly(amidoamine) (PAMAM) dendrons , 2005 .

[111]  J. Fréchet,et al.  Discovery of dendrimers and dendritic polymers: A brief historical perspective* , 2002 .

[112]  Bradford G. Orr,et al.  DNA-Directed Synthesis of Generation 7 and 5 PAMAM Dendrimer Nanoclusters , 2004 .

[113]  Marc R. Knecht,et al.  Magnetic properties of dendrimer-encapsulated iron nanoparticles containing an average of 55 and 147 atoms , 2007 .

[114]  Nastassja A. Lewinski,et al.  Cytotoxicity of nanoparticles. , 2008, Small.

[115]  J. Baker,et al.  Visualization and Characterization of Poly(amidoamine) Dendrimers by Atomic Force Microscopy , 2000 .

[116]  F. Stellacci,et al.  Thermodynamic Study of the Reactivity of the Two Topological Point Defects Present in Mixed Self‐Assembled Monolayers on Gold Nanoparticles , 2008 .

[117]  D. Tomalia Starburst/Cascade Dendrimers: Fundamental building blocks for a new nanoscopic chemistry set , 1994 .

[118]  M. Fox,et al.  Nanoparticle-cored dendrimers: synthesis and characterization. , 2003, Journal of the American Chemical Society.

[119]  N. Turro,et al.  Molecular Recognition and Chemistry in Restricted Reaction Spaces. Photophysics and Photoinduced Electron Transfer on the Surfaces of Micelles, Dendrimers, and DNA , 1991 .

[120]  B. Rutt,et al.  Enhanced cell uptake of superparamagnetic iron oxide nanoparticles functionalized with dendritic guanidines. , 2008, Bioconjugate chemistry.

[121]  Klaas Nicolay,et al.  Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging. , 2008, Bioconjugate chemistry.

[122]  V. Rotello,et al.  Controlled interparticle spacing through self-assembly of Au nanoparticles and poly(amidoamine) dendrimers. , 2002, Journal of the American Chemical Society.

[123]  K. Sun,et al.  Characterization of crystalline dendrimer-stabilized gold nanoparticles , 2006 .

[124]  K. Nagayama,et al.  Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage. , 2004, Angewandte Chemie.

[125]  D. Lelie,et al.  DNA-guided crystallization of colloidal nanoparticles , 2008, Nature.

[126]  Uri Banin,et al.  Growth and Properties of Semiconductor Core/Shell Nanocrystals with InAs Cores , 2000 .

[127]  D. Leslie-Pelecky,et al.  Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. , 2008, Molecular pharmaceutics.

[128]  Richard M. Crooks,et al.  Preparation of Cu Nanoclusters within Dendrimer Templates , 1998 .

[129]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[130]  Michael V Knopp,et al.  Comparison of dendrimer‐based macromolecular contrast agents for dynamic micro‐magnetic resonance lymphangiography , 2003, Magnetic resonance in medicine.

[131]  C. Hawker,et al.  Fullerene-bound dendrimers. Soluble, isolated carbon clusters , 1993 .

[132]  M. J. Damha,et al.  An improved procedure for derivatization of controlled-pore glass beads for solid-phase oligonucleotide synthesis , 1990, Nucleic Acids Res..

[133]  P. Singh Terminal groups in Starburst dendrimers: activation and reactions with proteins. , 1998, Bioconjugate chemistry.

[134]  C. Mirkin The beginning of a small revolution. , 2004, Small.

[135]  J. West,et al.  The Differential Cytotoxicity of Water-Soluble Fullerenes , 2004 .

[136]  Chad A Mirkin,et al.  Asymmetric functionalization of gold nanoparticles with oligonucleotides. , 2006, Journal of the American Chemical Society.

[137]  S. Jockusch,et al.  An EPR Study of the Interactions between Starburst Dendrimers and Polynucleotides , 1999 .

[138]  D. Scheinberg,et al.  Tumor Targeting with Antibody-Functionalized, Radiolabeled Carbon Nanotubes , 2007, Journal of Nuclear Medicine.

[139]  Yin Ren,et al.  In vivo tumor cell targeting with "click" nanoparticles. , 2008, Bioconjugate chemistry.

[140]  Xiaogang Peng,et al.  Stabilization of inorganic nanocrystals by organic dendrons. , 2002, Journal of the American Chemical Society.

[141]  Darcy J. Gentleman,et al.  A systematic nomenclature for codifying engineered nanostructures. , 2009, Small.

[142]  A. Rich,et al.  Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[143]  B. Fahlman,et al.  Preparation of fullerene-shell dendrimer-core nanoconjugates. , 2005, Nano letters.

[144]  M. Hersam Progress towards monodisperse single-walled carbon nanotubes. , 2008, Nature nanotechnology.

[145]  S. Jockusch,et al.  Characterization of Starburst Dendrimers by EPR. 3. Aggregational Processes of a Positively Charged Nitroxide Surfactant , 1996 .

[146]  Jean M. J. Fréchet,et al.  Dendritic Encapsulation of Function: Applying Nature's Site Isolation Principle from Biomimetics to Materials Science. , 2001, Angewandte Chemie.

[147]  Steven E. Keinath,et al.  Rheology of Dendrimers. I. Newtonian Flow Behavior of Medium and Highly Concentrated Solutions of Polyamidoamine (PAMAM) Dendrimers in Ethylenediamine (EDA) Solvent , 1998 .

[148]  S. Henderson,et al.  Dendrimers — an Enabling Synthetic Science to Controlled Organic Nanostructures , 2002 .

[149]  Marc R. Knecht,et al.  Effect of Pd nanoparticle size on the catalytic hydrogenation of allyl alcohol. , 2006, Journal of the American Chemical Society.

[150]  William A. Goddard,et al.  Starburst dendrimers. 5. Molecular shape control , 1989 .

[151]  T. Goodson,et al.  Quantum-sized gold clusters as efficient two-photon absorbers. , 2008, Journal of the American Chemical Society.

[152]  Leon Hirsch,et al.  Nanoshell-Enabled Photonics-Based Imaging and Therapy of Cancer , 2004, Technology in cancer research & treatment.

[153]  N. Turro,et al.  Photophysical investigation of similarities between starburst dendrimers and anionic micelles , 1991 .

[154]  Jack D. Dunitz,et al.  Reflections On Symmetry , 1993 .

[155]  Thommey P. Thomas,et al.  Synthesis and in vitro testing of J591 antibody-dendrimer conjugates for targeted prostate cancer therapy. , 2004, Bioconjugate chemistry.

[156]  Marc R. Knecht,et al.  Periodicity and Atomic Ordering in Nanosized Particles of Crystals , 2008 .

[157]  F. Rosei,et al.  Metal nanoparticles: from "artificial atoms" to "artificial molecules". , 2007, Angewandte Chemie.

[158]  D. Tomalia,et al.  The random parking of spheres on spheres , 1996 .

[159]  M. Shim,et al.  γ-Fe2O3/II−VI Sulfide Nanocrystal Heterojunctions , 2005 .

[160]  John E. Johnson,et al.  Natural Nanochemical Building Blocks: Icosahedral Virus Particles Organized by Attached Oligonucleotides , 2004 .

[161]  J. Malm,et al.  Ligand-stabilized giant palladium clusters : promising candidates in heterogeneous catalysis , 1993 .

[162]  Igor L. Medintz,et al.  Intracellular delivery of quantum dot-protein cargos mediated by cell penetrating peptides. , 2008, Bioconjugate chemistry.

[163]  D. Tomalia,et al.  Partial shell-filled core-shell tecto(dendrimers): A strategy to surface differentiated nano-clefts and cusps , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[164]  Choi,et al.  Size-dependent melting temperature of individual nanometer-sized metallic clusters. , 1990, Physical review. B, Condensed matter.

[165]  W. E. Billups,et al.  Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. , 2006, Toxicology letters.

[166]  M. Damha,et al.  Automated solid-phase synthesis of branched oligonucleotides , 1989 .

[167]  V. Rotello,et al.  Controlled Plasmon Resonance of Gold Nanoparticles Self-Assembled with PAMAM Dendrimers , 2005 .

[168]  Donald A. Tomalia,et al.  Visualization of Dendrimer Molecules by Transmission Electron Microscopy (TEM): Staining Methods and Cryo-TEM of Vitrified Solutions , 1998 .

[169]  G. U. Kulkarni,et al.  Magic Nuclearity Giant Clusters of Metal Nanocrystals Formed by Mesoscale Self-Assembly , 2001 .

[170]  Johannes A A W Elemans,et al.  Self-assembled nanoreactors. , 2005, Chemical reviews.

[171]  V. Percec,et al.  Supramolecular structural diversity among first-generation hybrid dendrimers and twin dendrons. , 2008, Chemistry.

[172]  R. Stafford,et al.  Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[173]  William A. Goddard,et al.  Starburst Dendrimers: Molecular‐Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter , 1990 .

[174]  B. Pullman The Atom in the History of Human Thought , 1998 .

[175]  Dmitri V Talapin,et al.  Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. , 2006, Journal of the American Chemical Society.

[176]  James R Baker,et al.  Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. , 2007, Small.

[177]  S. Agarwal,et al.  Stoichiometric functionalization of gold nanoparticles in solution through a free radical polymerization approach. , 2008, Journal of the American Chemical Society.

[178]  Xiaogang Peng,et al.  Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. , 2001, Journal of the American Chemical Society.

[179]  Robert Deschenaux,et al.  Liquid-crystalline fullerodendrimers , 2007 .

[180]  Malcolm L. H. Green,et al.  Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes. , 2002, Chemical communications.

[181]  Jørn B. Christensen,et al.  Dendrimers in Medicine and Biotechnology , 2006 .

[182]  J. Baker,et al.  Imaging {Au0-PAMAM} Gold-dendrimer Nanocomposites in Cells , 2002 .

[183]  Nicholas A. Kotov,et al.  Albumin−CdTe Nanoparticle Bioconjugates: Preparation, Structure, and Interunit Energy Transfer with Antenna Effect , 2001 .

[184]  D. Tomalia Fluorine makes a difference , 2003, Nature materials.

[185]  Kazunori Kataoka,et al.  Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. , 2006, Pharmacology & therapeutics.

[186]  C. Ahn,et al.  Controlling polymer shape through the self-assembly of dendritic side-groups , 1998, Nature.

[187]  Nadrian C. Seeman Nanotechnology and the double helix. , 2004 .

[188]  Michael B. Hall,et al.  Dendritic macromolecules: synthesis of starburst dendrimers , 1986 .

[189]  A Paul Alivisatos,et al.  DNA-Based Assembly of Gold Nanocrystals. , 1999, Angewandte Chemie.

[190]  D. Tomalia,et al.  Genealogically directed synthesis: Starburst/cascade dendrimers and hyperbranched structures , 1993 .

[191]  J. C. Roberts,et al.  Using starburst dendrimers as linker molecules to radiolabel antibodies. , 1990, Bioconjugate chemistry.

[192]  V. Percec,et al.  Expanding the structural diversity of self-assembling dendrons and supramolecular dendrimers via complex building blocks. , 2007, Journal of the American Chemical Society.

[193]  Xiaogang Peng,et al.  Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals , 2003 .

[194]  W. Prensky,et al.  Dendritic nucleic acid structures. , 1997, Journal of theoretical biology.

[195]  J. C. Flores,et al.  Catalysts based on palladium dendrimers , 2007 .

[196]  Liberato Manna,et al.  Synthesis, properties and perspectives of hybrid nanocrystal structures. , 2006, Chemical Society reviews.

[197]  Todd D. Krauss,et al.  Attachment of Single CdSe Nanocrystals to Individual Single-Walled Carbon Nanotubes , 2002 .

[198]  Benjamin Fehrensen,et al.  Formation of Superclusters from Metallic Clusters , 1997 .

[199]  S. Gruner,et al.  Nanoparticle-Induced Packing Transition in Mesostructured Block Dendron−Silica Hybrids , 2007 .

[200]  H. Ghandehari,et al.  Transport mechanism(s) of poly (amidoamine) dendrimers across Caco-2 cell monolayers. , 2003, International journal of pharmaceutics.

[201]  J. Fréchet,et al.  Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. , 1994, Science.

[202]  Stanislaus S. Wong,et al.  Synthesis and Characterization of Carbon Nanotube−Nanocrystal Heterostructures , 2002 .

[203]  G. Schneider,et al.  Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[204]  N. Armaroli,et al.  A fullerene core to probe dendritic shielding effects , 2003 .

[205]  D. Tomalia,et al.  Dendrimers Peripherally Modified with Anion Radicals That Form π-Dimers and π-Stacks , 1997 .

[206]  J. Baker,et al.  Inhibition of viral adhesion and infection by sialic-acid-conjugated dendritic polymers. , 1999, Bioconjugate chemistry.

[207]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[208]  F. Papadimitrakopoulos,et al.  Purification and Separation of Carbon Nanotubes , 2004 .

[209]  David E Reichert,et al.  Self-Assembling Dendrimers , 1996, Science.

[210]  Matthias Brack,et al.  The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches , 1993 .

[211]  G. Schmid Clusters and colloids: bridges between molecular and condensed material , 1990 .