On the strong metric dimension of the strong products of graphs

Abstract Let G be a connected graph. A vertex w ∈ V.G/ strongly resolves two vertices u,v ∈ V.G/ if there exists some shortest u-w path containing v or some shortest v-w path containing u. A set S of vertices is a strong resolving set for G if every pair of vertices of G is strongly resolved by some vertex of S. The smallest cardinality of a strong resolving set for G is called the strong metric dimension of G. It is well known that the problem of computing this invariant is NP-hard. In this paper we study the problem of finding exact values or sharp bounds for the strong metric dimension of strong product graphs and express these in terms of invariants of the factor graphs.

[1]  Jozef Kratica,et al.  Minimal doubly resolving sets and the strong metric dimension of Hamming graphs , 2012 .

[2]  José Cáceres,et al.  Boundary-type sets and product operators in graphs ⋆ , 2010 .

[3]  Mark E. Johnson Browsable structure-activity datasets , 1999 .

[4]  David R. Wood,et al.  On the Metric Dimension of Cartesian Products of Graphs , 2005, SIAM J. Discret. Math..

[5]  Edy Tri Baskoro,et al.  The metric dimension of the lexicographic product of graphs , 2013, Discret. Math..

[6]  András Sebö,et al.  On Metric Generators of Graphs , 2004, Math. Oper. Res..

[7]  Dorota Kuziak,et al.  The metric dimension of strong product graphs , 2013 .

[8]  C. Berge Fractional Graph Theory , 1978 .

[9]  Dennis P. Geller,et al.  The chromatic number and other functions of the lexicographic product , 1975 .

[10]  Sandi Klavzar,et al.  On the chromatic number of the lexicographic product and the Cartesian sum of graphs , 1994, Discret. Math..

[11]  P. K. Jha,et al.  Independence numbers of product graphs , 1994 .

[12]  Juan A. Rodríguez-Velázquez,et al.  On the metric dimension of corona product graphs , 2011, Comput. Math. Appl..

[13]  N. Duncan Leaves on trees , 2014 .

[14]  W. Imrich,et al.  Handbook of Product Graphs, Second Edition , 2011 .

[15]  Ortrud R. Oellermann,et al.  The strong metric dimension of graphs and digraphs , 2007, Discret. Appl. Math..

[16]  Ioan Tomescu,et al.  Metric bases in digital geometry , 1984, Comput. Vis. Graph. Image Process..

[17]  Kaishun Wang,et al.  On the metric dimension and fractional metric dimension for hierarchical product of graphs , 2012, 1211.1432.

[18]  Juan A. Rodríguez-Velázquez,et al.  On the strong metric dimension of corona product graphs and join graphs , 2012, Discret. Appl. Math..

[19]  M. Johnson,et al.  Structure-activity maps for visualizing the graph variables arising in drug design. , 1993, Journal of biopharmaceutical statistics.

[20]  Mohsen Jannesari,et al.  The metric dimension of the lexicographic product of graphs , 2012, Discret. Math..

[21]  E. Scheinerman,et al.  Fractional Graph Theory: A Rational Approach to the Theory of Graphs , 1997 .

[22]  Azriel Rosenfeld,et al.  Landmarks in Graphs , 1996, Discret. Appl. Math..

[23]  R. S. Hales,et al.  Numerical invariants and the strong product of graphs , 1973 .

[24]  O. Ore Theory of Graphs , 1962 .