Identification of Anti-virulence Compounds That Disrupt Quorum-Sensing Regulated Acute and Persistent Pathogenicity

Etiological agents of acute, persistent, or relapsing clinical infections are often refractory to antibiotics due to multidrug resistance and/or antibiotic tolerance. Pseudomonas aeruginosa is an opportunistic Gram-negative bacterial pathogen that causes recalcitrant and severe acute chronic and persistent human infections. Here, we target the MvfR-regulated P. aeruginosa quorum sensing (QS) virulence pathway to isolate robust molecules that specifically inhibit infection without affecting bacterial growth or viability to mitigate selective resistance. Using a whole-cell high-throughput screen (HTS) and structure-activity relationship (SAR) analysis, we identify compounds that block the synthesis of both pro-persistence and pro-acute MvfR-dependent signaling molecules. These compounds, which share a benzamide-benzimidazole backbone and are unrelated to previous MvfR-regulon inhibitors, bind the global virulence QS transcriptional regulator, MvfR (PqsR); inhibit the MvfR regulon in multi-drug resistant isolates; are active against P. aeruginosa acute and persistent murine infections; and do not perturb bacterial growth. In addition, they are the first compounds identified to reduce the formation of antibiotic-tolerant persister cells. As such, these molecules provide for the development of next-generation clinical therapeutics to more effectively treat refractory and deleterious bacterial-human infections.

[1]  P. Chung,et al.  Anti-biofilm agents: recent breakthrough against multi-drug resistant Staphylococcus aureus. , 2014, Pathogens and disease.

[2]  R. Hartmann,et al.  Overcoming the unexpected functional inversion of a PqsR antagonist in Pseudomonas aeruginosa: an in vivo potent antivirulence agent targeting pqs quorum sensing. , 2014, Angewandte Chemie.

[3]  J. Wilhelmy,et al.  A Quorum Sensing Small Volatile Molecule Promotes Antibiotic Tolerance in Bacteria , 2013, PloS one.

[4]  T. Coenye,et al.  Quorum sensing inhibitors: how strong is the evidence? , 2013, Trends in microbiology.

[5]  Richard D. Smith,et al.  Activated ClpP kills persisters and eradicates a chronic biofilm infection , 2013, Nature.

[6]  Thomas Bjarnsholt,et al.  Applying insights from biofilm biology to drug development — can a new approach be developed? , 2013, Nature Reviews Drug Discovery.

[7]  R. Tompkins,et al.  A Small Volatile Bacterial Molecule Triggers Mitochondrial Dysfunction in Murine Skeletal Muscle , 2013, PloS one.

[8]  P. Williams,et al.  Structural Basis for Native Agonist and Synthetic Inhibitor Recognition by the Pseudomonas aeruginosa Quorum Sensing Regulator PqsR (MvfR) , 2013, PLoS pathogens.

[9]  L. Rahme,et al.  A method for high throughput determination of viable bacteria cell counts in 96-well plates , 2012, BMC Microbiology.

[10]  R. Tompkins,et al.  The Quorum Sensing Volatile Molecule 2-Amino Acetophenon Modulates Host Immune Responses in a Manner that Promotes Life with Unwanted Guests , 2012, PLoS pathogens.

[11]  E. Pamer,et al.  Antibiotics, microbiota, and immune defense. , 2012, Trends in immunology.

[12]  Benjamin B. Kaufmann,et al.  Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals , 2012, Proceedings of the National Academy of Sciences.

[13]  D. Lovley,et al.  Phylogenetic Classification of Diverse LysR-Type Transcriptional Regulators of a Model Prokaryote Geobacter sulfurreducens , 2012, Journal of Molecular Evolution.

[14]  Jung-Ae Kim,et al.  7-fluoroindole as an antivirulence compound against Pseudomonas aeruginosa. , 2012, FEMS microbiology letters.

[15]  D. Livermore,et al.  Fourteen years in resistance. , 2012, International journal of antimicrobial agents.

[16]  R. Hartmann,et al.  Discovery of antagonists of PqsR, a key player in 2-alkyl-4-quinolone-dependent quorum sensing in Pseudomonas aeruginosa. , 2012, Chemistry & biology.

[17]  James J. Collins,et al.  Signaling-Mediated Bacterial Persister Formation , 2011, Nature chemical biology.

[18]  B. Kazmierczak,et al.  Innate immune responses to Pseudomonas aeruginosa infection. , 2011, Microbes and infection.

[19]  Martin Schuster,et al.  The Sociomicrobiology of Antivirulence Drug Resistance: a Proof of Concept , 2011, mBio.

[20]  Yong‐Su Jin,et al.  Bacterial persisters tolerate antibiotics by not producing hydroxyl radicals. , 2011, Biochemical and biophysical research communications.

[21]  L. Rahme,et al.  A Quorum Sensing Regulated Small Volatile Molecule Reduces Acute Virulence and Promotes Chronic Infection Phenotypes , 2011, PLoS pathogens.

[22]  Jan Michiels,et al.  Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. , 2011, Journal of medical microbiology.

[23]  James J. Collins,et al.  Metabolite-Enabled Eradication of Bacterial Persisters by Aminoglycosides , 2011, Nature.

[24]  C. Ryan,et al.  Production of Pseudomonas aeruginosa Intercellular Small Signaling Molecules in Human Burn Wounds , 2011, Journal of pathogens.

[25]  R. Laing,et al.  2-Aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung , 2010, BMC pulmonary medicine.

[26]  S. Lory,et al.  Emergence of Pseudomonas aeruginosa Strains Producing High Levels of Persister Cells in Patients with Cystic Fibrosis , 2010, Journal of bacteriology.

[27]  S. Diggle,et al.  Quinolones: from antibiotics to autoinducers , 2010, FEMS microbiology reviews.

[28]  L. Rahme,et al.  Homeostatic Interplay between Bacterial Cell-Cell Signaling and Iron in Virulence , 2010, PLoS pathogens.

[29]  H. Uchiyama,et al.  Bicyclic compounds repress membrane vesicle production and Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. , 2010, FEMS microbiology letters.

[30]  V. Sperandio,et al.  Anti-virulence strategies to combat bacteria-mediated disease , 2010, Nature Reviews Drug Discovery.

[31]  S. Molin,et al.  Evaluation of Enoyl-Acyl Carrier Protein Reductase Inhibitors as Pseudomonas aeruginosa Quorum-Quenching Reagents , 2010, Molecules.

[32]  C. Dean,et al.  Pseudomonas aeruginosa Increases Formation of Multidrug-Tolerant Persister Cells in Response to Quorum-Sensing Signaling Molecules , 2010, Journal of bacteriology.

[33]  B. Bassler,et al.  Bacterial quorum-sensing network architectures. , 2009, Annual review of genetics.

[34]  Vanessa Sperandio,et al.  Jamming bacterial communication: New approaches for the treatment of infectious diseases , 2009, EMBO molecular medicine.

[35]  N. Balaban,et al.  The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. , 2009, FEMS microbiology reviews.

[36]  T. Tolker-Nielsen,et al.  Computer-Aided Identification of Recognized Drugs as Pseudomonas aeruginosa Quorum-Sensing Inhibitors , 2009, Antimicrobial Agents and Chemotherapy.

[37]  M. Cámara,et al.  Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. , 2009, Current opinion in microbiology.

[38]  V. Sperandio,et al.  Cell‐to‐cell signalling during pathogenesis , 2009, Cellular microbiology.

[39]  K. Turner,et al.  H-NS family members function coordinately in an opportunistic pathogen , 2008, Proceedings of the National Academy of Sciences.

[40]  C. Rock,et al.  PqsD Is Responsible for the Synthesis of 2,4-Dihydroxyquinoline, an Extracellular Metabolite Produced by Pseudomonas aeruginosa* , 2008, Journal of Biological Chemistry.

[41]  L. Rahme,et al.  Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa , 2008, BMC Molecular Biology.

[42]  E. Pesci,et al.  Pseudomonas aeruginosa PqsA Is an Anthranilate-Coenzyme A Ligase , 2007, Journal of bacteriology.

[43]  R. Tompkins,et al.  Inhibitors of Pathogen Intercellular Signals as Selective Anti-Infective Compounds , 2007, PLoS pathogens.

[44]  D. Hogan,et al.  Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa , 2007, Molecular microbiology.

[45]  L. Rahme,et al.  PqsA is required for the biosynthesis of 2,4-dihydroxyquinoline (DHQ), a newly identified metabolite produced by Pseudomonas aeruginosa and Burkholderia thailandensis , 2007, Biological chemistry.

[46]  David A. D'Argenio,et al.  Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients , 2007, Molecular microbiology.

[47]  E. Pesci,et al.  Two Distinct Pathways Supply Anthranilate as a Precursor of the Pseudomonas Quinolone Signal , 2007, Journal of bacteriology.

[48]  L. Rahme,et al.  MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR‐class regulatory protein, has dual ligands , 2006, Molecular microbiology.

[49]  L. Rahme,et al.  Mutation analysis of the Pseudomonas aeruginosa mvfR and pqsABCDE gene promoters demonstrates complex quorum-sensing circuitry. , 2006, Microbiology.

[50]  David A. D'Argenio,et al.  Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[51]  J. Joung,et al.  Repression of phase-variable cup gene expression by H-NS-like proteins in Pseudomonas aeruginosa. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[52]  E. Pesci,et al.  Regulation of Pseudomonas Quinolone Signal Synthesis in Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[53]  Eric Déziel,et al.  The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing‐regulated genes are modulated without affecting lasRI, rhlRI or the production of N‐acyl‐ l‐homoserine lactones , 2004, Molecular microbiology.

[54]  R. Tompkins,et al.  Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[55]  J. Ghigo,et al.  A rapid and simple method for inactivating chromosomal genes in Yersinia. , 2003, FEMS immunology and medical microbiology.

[56]  R. Tompkins,et al.  The Drosophila melanogaster Toll Pathway Participates in Resistance to Infection by the Gram-Negative Human Pathogen Pseudomonas aeruginosa , 2003, Infection and Immunity.

[57]  L. Rahme,et al.  A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures. , 2003, Biochimica et biophysica acta.

[58]  U. Ozbek,et al.  Expression stability of six housekeeping genes: A proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. , 2003, Journal of medical microbiology.

[59]  Marina S. Kuznetsova,et al.  Functions Required for Extracellular Quinolone Signaling by Pseudomonas aeruginosa , 2002, Journal of bacteriology.

[60]  L DelaBarre,et al.  The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. , 2001, Journal of magnetic resonance.

[61]  L. Rahme,et al.  A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[62]  J. Mekalanos,et al.  Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[63]  F. Ausubel,et al.  Plants and animals share functionally common bacterial virulence factors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[64]  J. Mattick,et al.  Pseudomonas aeruginosa Gene Products PilT and PilU Are Required for Cytotoxicity In Vitro and Virulence in a Mouse Model of Acute Pneumonia , 1999, Infection and Immunity.

[65]  Thomas D. Y. Chung,et al.  A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays , 1999, Journal of biomolecular screening.

[66]  Frederick M. Ausubel,et al.  Molecular Mechanisms of Bacterial Virulence Elucidated Using a Pseudomonas Aeruginosa– Caenorhabditis Elegans Pathogenesis Model , 2022 .

[67]  F. Ausubel,et al.  Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[68]  B. Iglewski,et al.  Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes , 1997, Journal of bacteriology.

[69]  B. Gicquel,et al.  Generation of unmarked directed mutations in mycobacteria, using sucrose counter‐selectable suicide vectors , 1996, Molecular microbiology.

[70]  B. Gicquel,et al.  Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria , 1996, Journal of bacteriology.

[71]  A. Prince,et al.  Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection , 1996, Infection and immunity.

[72]  F. Ausubel,et al.  Common virulence factors for bacterial pathogenicity in plants and animals. , 1995, Science.

[73]  G. Taylor,et al.  Rapid identification of 4-hydroxy-2-alkylquinolines produced by Pseudomonas aeruginosa using gas chromatography-electron-capture mass spectrometry. , 1995, Journal of chromatography. B, Biomedical applications.

[74]  I. Crawford,et al.  Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications , 1990, Journal of bacteriology.

[75]  T. Mosmann Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. , 1983, Journal of immunological methods.

[76]  K. Lewis,et al.  Persister cells. , 2010, Annual review of microbiology.

[77]  J. Bartlett,et al.  Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[78]  K. Krogfelt,et al.  Why chronic wounds will not heal: a novel hypothesis , 2008, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[79]  Miguel Cámara,et al.  The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. , 2007, Chemistry & biology.

[80]  T. Tolker-Nielsen,et al.  Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. , 2007, Microbiology.

[81]  M. Schell Molecular biology of the LysR family of transcriptional regulators. , 1993, Annual review of microbiology.

[82]  W. S. Veeman,et al.  Broadband heteronuclear decoupling , 1983 .

[83]  A. Bauer,et al.  Single disc versus multiple disc and plate dilution techniques for antibiotic sensitivity testing. , 1959, Antibiotics annual.

[84]  Kirby Wm,et al.  Single disc versus multiple disc and plate dilution techniques for antibiotic sensitivity testing. , 1959 .