Biogeographic parallels in thermal tolerance and gene expression variation under temperature stress in a widespread bumble bee

[1]  Jeffrey D. Lozier,et al.  Local adaptation across a complex bioclimatic landscape in two montane bumble bee species , 2020, Molecular ecology.

[2]  J. Overgaard,et al.  Maintenance of hindgut reabsorption during cold exposure is a key adaptation for Drosophila cold tolerance , 2020, Journal of Experimental Biology.

[3]  R. Robertson,et al.  Neural dysfunction correlates with heat coma and CTmax in Drosophila but does not set the boundaries for heat stress survival , 2020, Journal of Experimental Biology.

[4]  J. Overgaard,et al.  Neural dysfunction correlates with heat coma and CTmax in Drosophila but does not set the boundaries for heat stress survival , 2019, bioRxiv.

[5]  Jeffrey D. Lozier,et al.  Adaptation to the abiotic environment in insects: the influence of variability on ecophysiology and evolutionary genomics. , 2019, Current opinion in insect science.

[6]  V. Loeschcke,et al.  Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species , 2019, Philosophical Transactions of the Royal Society B.

[7]  P. Calosi,et al.  Thermal tolerance patterns across latitude and elevation , 2019, Philosophical Transactions of the Royal Society B.

[8]  J. Rinehart,et al.  Immediate Transcriptional Response to a Temperature Pulse under a Fluctuating Thermal Regime , 2019, Integrative and Comparative Biology.

[9]  V. Kellermann,et al.  Terrestrial insects and climate change: adaptive responses in key traits , 2019, Physiological Entomology.

[10]  Y. Xiong,et al.  Comparative transcriptome analysis reveals differentially expressed genes in the Asian citrus psyllid (Diaphorina citri) upon heat shock. , 2019, Comparative biochemistry and physiology. Part D, Genomics & proteomics.

[11]  J. Overgaard,et al.  The central nervous system and muscular system play different roles for chill coma onset and recovery in insects. , 2019, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[12]  B. Flammang,et al.  Flexibility of Heterocercal Tails: What Can the Functional Morphology of Shark Tails Tell Us about Ichthyosaur Swimming? , 2019, Integrative organismal biology.

[13]  M. Muñoz,et al.  Janzen’s Hypothesis Meets the Bogert Effect: Connecting Climate Variation, Thermoregulatory Behavior, and Rates of Physiological Evolution , 2019, Integrative organismal biology.

[14]  C. Eckert,et al.  Local adaptation primes cold-edge populations for range expansion but not warming-induced range shifts. , 2018, Ecology letters.

[15]  J. Kerr,et al.  Climate change-driven range losses among bumblebee species are poised to accelerate , 2018, Scientific Reports.

[16]  P. Moore,et al.  The importance of phenotypic plasticity and local adaptation in driving intraspecific variability in thermal niches of marine macrophytes , 2018 .

[17]  A. Shevchenko,et al.  A Temperature-Dependent Switch in Feeding Preference Improves Drosophila Development and Survival in the Cold. , 2018, Developmental cell.

[18]  T. Pitts‐Singer,et al.  Environmental history impacts gene expression during diapause development in the alfalfa leafcutting bee, Megachile rotundata , 2018, Journal of Experimental Biology.

[19]  Jeffrey D. Lozier,et al.  Distance, elevation and environment as drivers of diversity and divergence in bumble bees across latitude and altitude , 2018, Molecular ecology.

[20]  J. Losos,et al.  Physiological and regulatory underpinnings of geographic variation in reptilian cold tolerance across a latitudinal cline , 2018, Molecular ecology.

[21]  M. Dillon,et al.  Critical thermal limits of bumblebees (Bombus impatiens) are marked by stereotypical behaviors and are unchanged by acclimation, age or feeding status , 2018, Journal of Experimental Biology.

[22]  J. Lobo,et al.  Bumblebees take the high road: climatically integrative biogeography shows that escape from Tibet, not Tibetan uplift, is associated with divergences of present‐day Mendacibombus , 2018 .

[23]  D. Lowry,et al.  Gene regulatory divergence between locally adapted ecotypes in their native habitats , 2018, Molecular ecology.

[24]  Per B. Brockhoff,et al.  lmerTest Package: Tests in Linear Mixed Effects Models , 2017 .

[25]  Astrid Gall,et al.  Ensembl 2018 , 2017, Nucleic Acids Res..

[26]  Zhong‐Hu Li,et al.  Comparative Transcriptome Analysis Reveals Adaptive Evolution of Notopterygium incisum and Notopterygium franchetii, Two High-Alpine Herbal Species Endemic to China , 2017, Molecules.

[27]  K. Montooth,et al.  Maternal loading of a small heat shock protein increases embryo thermal tolerance in Drosophila melanogaster , 2017, Journal of Experimental Biology.

[28]  G. Rosiński,et al.  The physiological role of fat body and muscle tissues in response to cold stress in the tropical cockroach Gromphadorhina coquereliana , 2017, PloS one.

[29]  S. Palumbi,et al.  Tidal heat pulses on a reef trigger a fine-tuned transcriptional response in corals to maintain homeostasis , 2017, Science Advances.

[30]  J. Overgaard,et al.  The Integrative Physiology of Insect Chill Tolerance. , 2017, Annual review of physiology.

[31]  Hajk-Georg Drost,et al.  Biomartr: genomic data retrieval with R , 2017, Bioinform..

[32]  M. Dillon,et al.  Altitudinal variation in bumble bee (Bombus) critical thermal limits. , 2016, Journal of thermal biology.

[33]  P. Stott,et al.  How climate change affects extreme weather events , 2016, Science.

[34]  Z. Cheviron,et al.  Transcriptomic plasticity in brown adipose tissue contributes to an enhanced capacity for nonshivering thermogenesis in deer mice , 2016, Molecular ecology.

[35]  C. Grozinger,et al.  Conservation and modification of genetic and physiological toolkits underpinning diapause in bumble bee queens , 2015, Molecular ecology.

[36]  Paul H. Williams,et al.  Relocation risky for bumblebee colonies. , 2015, Science.

[37]  Paul Galpern,et al.  Climate change impacts on bumblebees converge across continents , 2015, Science.

[38]  Paul H. Williams,et al.  Molecular tools and bumble bees: revealing hidden details of ecology and evolution in a model system , 2015, Molecular ecology.

[39]  Erich Bornberg-Bauer,et al.  The genomes of two key bumblebee species with primitive eusocial organization , 2015, Genome Biology.

[40]  J. F. Storz,et al.  Adaptive Modifications of Muscle Phenotype in High-Altitude Deer Mice Are Associated with Evolved Changes in Gene Regulation. , 2015, Molecular biology and evolution.

[41]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[42]  T. MacRae,et al.  Insect heat shock proteins during stress and diapause. , 2015, Annual review of entomology.

[43]  Kimberly S. Sheldon,et al.  The impact of seasonality in temperature on thermal tolerance and elevational range size. , 2014, Ecology.

[44]  M. McPeek,et al.  Is dispersal neutral? , 2014, Trends in ecology & evolution.

[45]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[46]  B. Sinclair,et al.  Divergent transcriptional responses to low temperature among populations of alpine and lowland species of New Zealand stick insects (Micrarchus) , 2014, Molecular ecology.

[47]  R. Simonini,et al.  Trans-generational plasticity in physiological thermal tolerance is modulated by maternal pre-reproductive environment in the polychaete Ophryotrocha labronica , 2014, Journal of Experimental Biology.

[48]  Robert K. Colwell,et al.  Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation , 2014, Proceedings of the National Academy of Sciences.

[49]  P. Edwards,et al.  Widespread phenotypic and genetic divergence along altitudinal gradients in animals , 2013, Journal of evolutionary biology.

[50]  M. Lascoux,et al.  Ecological genomics of local adaptation , 2013, Nature Reviews Genetics.

[51]  P. Marquet,et al.  Heat freezes niche evolution. , 2013, Ecology letters.

[52]  Brian R Johnson,et al.  The importance of tissue specificity for RNA-seq: highlighting the errors of composite structure extractions , 2013, BMC Genomics.

[53]  S. Chown,et al.  Upper thermal limits in terrestrial ectotherms: how constrained are they? , 2013 .

[54]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[55]  J. Steffensen,et al.  Local Adaptation to Altitude Underlies Divergent Thermal Physiology in Tropical Killifishes of the Genus Aphyosemion , 2013, PloS one.

[56]  I. Rigoutsos,et al.  The complex transcriptional landscape of the anucleate human platelet , 2013, BMC Genomics.

[57]  V. Loeschcke,et al.  Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically , 2012, Proceedings of the National Academy of Sciences.

[58]  R. Burton,et al.  Investigating the molecular basis of local adaptation to thermal stress: population differences in gene expression across the transcriptome of the copepod Tigriopus californicus , 2012, BMC Evolutionary Biology.

[59]  Nicholas K. Dulvy,et al.  Thermal tolerance and the global redistribution of animals , 2012 .

[60]  Davis J. McCarthy,et al.  Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation , 2012, Nucleic acids research.

[61]  S. Chown,et al.  Ecologically relevant measures of tolerance to potentially lethal temperatures , 2011, Journal of Experimental Biology.

[62]  Matko Bosnjak,et al.  REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms , 2011, PloS one.

[63]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[64]  A. Farrell,et al.  Differences in Thermal Tolerance Among Sockeye Salmon Populations , 2011, Science.

[65]  A. Hoffmann,et al.  Climate change and evolutionary adaptation , 2011, Nature.

[66]  Jeffrey D. Lozier,et al.  Patterns of widespread decline in North American bumble bees , 2011, Proceedings of the National Academy of Sciences.

[67]  J. G. Sørensen Application of heat shock protein expression for detecting natural adaptation and exposure to stress in natural populations , 2010 .

[68]  A. Dornhaus,et al.  Ambient Air Temperature Does Not Predict whether Small or Large Workers Forage in Bumble Bees (Bombus impatiens) , 2010, Psyche; a journal of entomology.

[69]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[70]  Kevin J. Gaston,et al.  Macrophysiology: A Conceptual Reunification , 2009, The American Naturalist.

[71]  J. Stillman,et al.  Seasonal and latitudinal acclimatization of cardiac transcriptome responses to thermal stress in porcelain crabs, Petrolisthes cinctipes , 2009, Molecular ecology.

[72]  A. Hoffmann,et al.  Fundamental Evolutionary Limits in Ecological Traits Drive Drosophila Species Distributions , 2009, Science.

[73]  S. Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[74]  S. Sunagawa,et al.  Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata , 2008, Molecular ecology.

[75]  A. Hoffmann,et al.  Detecting genetic responses to environmental change , 2008, Nature Reviews Genetics.

[76]  Gabriel Moreno-Hagelsieb,et al.  Choosing BLAST options for better detection of orthologs as reciprocal best hits , 2008, Bioinform..

[77]  H. Hines Historical biogeography, divergence times, and diversification patterns of bumble bees (Hymenoptera: Apidae: Bombus). , 2008, Systematic biology.

[78]  A. Hoffmann,et al.  Candidate genes and thermal phenotypes: identifying ecologically important genetic variation for thermotolerance in the Australian Drosophila melanogaster cline , 2007, Molecular ecology.

[79]  Paul H. Williams,et al.  A comprehensive phylogeny of the bumble bees (Bombus) , 2007 .

[80]  L. Personnaz,et al.  BIOINFORMATICS REVIEW , 2005 .

[81]  P. Schulte,et al.  Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus , 2006, Journal of Experimental Biology.

[82]  K. Damodaran,et al.  Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells. , 2006, Cryobiology.

[83]  R. Dudley,et al.  Into thin air: Physiology and evolution of alpine insects. , 2006, Integrative and comparative biology.

[84]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[85]  V. Loeschcke,et al.  Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster. , 2005, Journal of insect physiology.

[86]  J. Gurd,et al.  Association of heat shock proteins and neuronal membrane components with lipid rafts from the rat brain , 2005, Journal of neuroscience research.

[87]  G. Somero Linking biogeography to physiology: Evolutionary and acclimatory adjustments of thermal limits , 2005, Frontiers in Zoology.

[88]  B. Heinrich,et al.  How do bees shiver? , 1991, The Science of Nature.

[89]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[90]  F. D. Vogt Thermoregulation in Bumblebee Colonies. I. Thermoregulatory versus Brood-Maintenance Behaviors during Acute Changes in Ambient Temperature , 1986, Physiological Zoology.

[91]  J. Levinton,et al.  Latitudinal Differentiation in Copepod Growth: An Adaptation to Temperature , 1985 .

[92]  B. Heinrich Heat exchange in relation to blood flow between thorax and abdomen in bumblebees. , 1976, The Journal of experimental biology.

[93]  B. Heinrich Thermoregulation in bumblebees , 1975, Journal of comparative physiology.

[94]  Bernd Heinrich,et al.  Thermoregulation in Bees , 2016 .

[95]  V. Loeschcke,et al.  How to assess Drosophila cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits , 2015 .

[96]  Bénédicte Aurélie Rivière Phenotypic Plasticity and Population-level Variation in Thermal Physiology of the Bumblebee 'Bombus impatiens' , 2012 .

[97]  J. Terblanche,et al.  Rapid thermal responses and thermal tolerance in adult codling moth Cydia pomonella (Lepidoptera: Tortricidae). , 2011, Journal of insect physiology.

[98]  Mogens Kruhøffer,et al.  Full genome gene expression analysis of the heat stress response in Drosophila melanogaster , 2005, Cell stress & chaperones.

[99]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .